Real-time frameworks

// 注: 这是我从一老外的课件里摘取出来的.  并非原创.

===============================================================================================================








Essential concepts of programming language design and implementation are explained and illustrated in the context of the object-oriented programming language (OOPL) paradigm. Written with the upper-level undergraduate student in mind, the text begins with an introductory chapter that summarizes the essential features of an OOPL, then widens the discussion to categorize the other major paradigms, introduce the important issues, and define the essential terms. After a brief second chapter on event-driven programming (EDP), subsequent chapters are built around case studies in each of the languages Smalltalk, C++, Java, C#, and Python. Included in each case study is a discussion of the accompanying libraries, including the essential container classes. For each language, one important event-driven library is singled out and studied. Sufficient information is given so that students can complete an event-driven project in any of the given languages. After completing the course the student should have a solid set of skills in each language the instructor chooses to cover, a comprehensive overview of how these languages relate to each other, and an appreciation of the major issues in OOPL design. Key Features Provides essential coverage of Smalltalk origins, syntax, and semantics, a valuable asset for students wanting to understand the hybrid Objective C language Includes a companion disc with source code and figures from the text. Provides detailed case studies of Smalltalk, Java, C++, C#, and Python and features a side-by-side development of the Java and C++ languages--highlighting their similarities and differences Sets the discussion in a historical framework, tracing the roots of the OOPLs back to Simula 67 Provides broad-based coverage of all languages, imparting essential skills as well as an appreciation for each language’s design philosophy Includes chapter summary, review questions, and exercises in each chapter, and an appendix with event-driven projects. Table of Contents Chapter 1 A Context-Sensitive Introduction Chapter 2 Event-Driven Programming Chapter 3 Smalltalk and the Squeak Environment Chapter 4 C++ and Java Commonalities and Similarities Chapter 5 Additional Concepts from the C++ Language Chapter 6 Visual Studio and the Microsoft Foundation Classes Chapter 7 Java and the Swing Library Chapter 8 C# and the Common Language Infrastructure Chapter 9 Python
The field of 3D point cloud semantic segmentation has been rapidly growing in recent years, with various deep learning approaches being developed to tackle this challenging task. One such approach is the U-Next framework, which has shown promising results in enhancing the semantic segmentation of 3D point clouds. The U-Next framework is a small but powerful network that is designed to extract features from point clouds and perform semantic segmentation. It is based on the U-Net architecture, which is a popular architecture used in image segmentation tasks. The U-Next framework consists of an encoder and a decoder, with skip connections between them to preserve spatial information. One of the key advantages of the U-Next framework is its ability to handle large-scale point clouds efficiently. It achieves this by using a hierarchical sampling strategy that reduces the number of points in each layer, while still preserving the overall structure of the point cloud. This allows the network to process large-scale point clouds in a more efficient manner, which is crucial for real-world applications. Another important aspect of the U-Next framework is its use of multi-scale feature fusion. This involves combining features from different scales of the point cloud to improve the accuracy of the segmentation. By fusing features from multiple scales, the network is able to capture both local and global context, which is important for accurately segmenting complex 3D scenes. Overall, the U-Next framework is a powerful tool for enhancing the semantic segmentation of 3D point clouds. Its small size and efficient processing make it ideal for real-time applications, while its multi-scale feature fusion allows it to accurately segment complex scenes. As the field of 3D point cloud semantic segmentation continues to grow, the U-Next framework is likely to play an increasingly important role in advancing this area of research.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值