论文阅读和分析:Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks

文章介绍了通过DeepPPG神经网络架构从加速度(ACC)和光电容积描记法(PPG)数据中提取心率信号的方法。首先,对数据进行频谱分析,然后利用特定频段的点进行网络输入。网络结构包括多层卷积和全连接层,用于特征提取和心率估计。评价指标主要为平均绝对误差(MAE),并对比了不同方法、网络参数以及活动状态下的心率估计效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、查看数据的时频谱图

左图中间的是心率信号,其他的是运动伪迹和其他噪声信号;

在这里插入图片描述

2、DaLiA数据集

采集不同场景下的数据。使用EEG信号的设备同时采集心率作为真实心率值;

在这里插入图片描述

3、提出神经网络架构DeepPPG

在这里插入图片描述

主要步骤:

1、提取频谱

(1)三个通道的ACC数据,就是三轴加速度,分别FFT,得到频谱;

(2)单通道的PPG数据,FFT变换得到频谱;

(3)FFT变换后取频率范围0-4HZ的点240个,加上端点,得到257个点;


网络架构:

层数参数param特征图shape
Convkernel_num(8)、kernel_size(1,1) 、stride(1,1)
maxpoolsize(1,2)、stripe(1,2)128*8
Convkernel_num(16)、kernel_size(1,3) 、stride(1,1)
maxpoolsize(1,2)、stripe(1,2)64*16
Convkernel_num(32)、kernel_size(1,3) 、stride(1,1)
maxpoolsize(1,2)、stripe(1,2)32*32
Convkernel_num(64)、kernel_size(1,3) 、stride(1,1)
maxpoolsize(1,2)、stripe(1,2)16*64
Convkernel_num(16)、kernel_size(1,1) 、stride(1,1)16*16
Flatten1*256
FC1641*64
FC211*1

4、评价指标
M A E = 1 W ∑ w = 1 W B P M e s t ( w ) − B P M r e f ( w ) MAE=\frac{1}{W}\sum\limits_{w=1}^W BPM_{est}(w)-BPM_{ref}(w) MAE=W1w=1WBPMest(w)BPMref(w)


5、实验结果

对比两种方法的MAE

在这里插入图片描述

对比不同网络参数的MAE

在这里插入图片描述

对比不同活动的心率图

在这里插入图片描述

对比单个实验者不同方法的MAE

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值