Project Euler | 欧拉计划 004 最大回文乘积

来来来,第四题,废话不多,上题目:

​​​​​​​

 

回文数的特点就是对称,那就遍历,取对应位置的数字判断是不是回文数就好了,然后找最大值

那首先肯定是写个函数,判断是否是回文数

然后两个数的乘积,从100一直到999,进行遍历

想了一下,找最大值,必然是从大到小找出第一个回文数,就是最大的

上代码:

##Project Euler Problem 004
#判断是否是回文数
def palindrome_num (num):
    str_num = str(num)
    a = len(str_num)
    i = 0
    while i <=a//2:
        if str_num[i] == str_num[a-1-i]:
            i += 1
        else:
            return False
            break
    return True

p_num = []

for m in range(999,99,-1):
    for n in range(m,99,-1):
        num = m*n
        if palindrome_num(num):
            p_num.append(num)
            break
print(max(p_num))

轻轻松松Output:906609

当然三位数的乘积位数在5位数到6位数,最大回文数必然是六位数,发现6位数的回文数有个特点,必能被11整除,(偶数位的回文数都有这个特点,证明就略了),也可以用这个特点简化回文数的判断函数!代码就不放了~下次见!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值