女生赛hdu6025

Do you know what is called ``Coprime Sequence''? That is a sequence consists of n positive integers, and the GCD (Greatest Common Divisor) of them is equal to 1.
``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.
 

Input
The first line of the input contains an integer T(1T10), denoting the number of test cases.
In each test case, there is an integer n(3n100000) in the first line, denoting the number of integers in the sequence.
Then the following line consists of n integers a1,a2,...,an(1ai109), denoting the elements in the sequence.
 

Output
For each test case, print a single line containing a single integer, denoting the maximum GCD.
 

Sample Input
3 3 1 1 1 5 2 2 2 3 2 4 1 2 4 8
 

Sample Output
1 2 2
 

Source
看数据 10w个而已 O(N)肯定可以过,每次枚举每一个点就可以了他的左右两遍就就是删去当前点剩下的gcd值,这题是被简化的。
#include<iostream>
#include<cstdio>
using namespace std;
int gcd(int a,int b){
	return b==0? a:gcd(b,a%b);
}
int main(){
	int t;
	scanf("%d",&t);
	while(t--){
		int n;
		scanf("%d",&n);
		int a[100005],l[100005],r[100005];
		for(int i=0;i<n;i++){
			scanf("%d",&a[i]);
		}
		l[0]=a[0];
		r[n-1]=a[n-1];
		for(int i=1;i<n;i++){
			l[i]=gcd(l[i-1],a[i]);
		}
		for(int i=n-2;i>=0;i--){
			r[i]=gcd(r[i+1],a[i]);
		}
		int ans = 0;
		if(ans<r[1]){
				ans=r[1];
			}
		if(ans<l[n-2])ans=l[n-2];
		for(int i=1;i<n-1;i++){
		 	if(ans<gcd(l[i-1],r[i+1])){
		 		ans = gcd(l[i-1],r[i+1]); 
			 }
		}
		printf("%d\n",ans);
	}
}
int gcd(int a,int b){
	return b==0? a:gcd(b,a%b);
}
int main(){
	int t;
	scanf("%d",&t);
	while(t--){
		int n;
		scanf("%d",&n);
		int a[100005],l[100005],r[100005];
		for(int i=0;i<n;i++){
			scanf("%d",&a[i]);
		}
		l[0]=a[0];
		r[n-1]=a[n-1];
		for(int i=1;i<n;i++){
			l[i]=gcd(l[i-1],a[i]);
		}
		for(int i=n-2;i>=0;i--){
			r[i]=gcd(r[i+1],a[i]);
		}
		int ans = 0;
		if(ans<r[1]){
				ans=r[1];
			}
		if(ans<l[n-2])ans=l[n-2];
		for(int i=1;i<n-1;i++){
		 	if(ans<gcd(l[i-1],r[i+1])){
		 		ans = gcd(l[i-1],r[i+1]); 
			 }
		}
		printf("%d\n",ans);
	}
}


展开阅读全文

没有更多推荐了,返回首页