最短路径_Dijkstra方法(单源最短路)

图结构练习——最短路径

Floyd (弗洛伊德) 方法

Description

给定一个带权无向图,求节点1到节点n的最短路径。

Input

输入包含多组数据,格式如下。
第一行包括两个整数n m,代表节点个数和边的个数。(n<=100)
剩下m行每行3个正整数a b c,代表节点a和节点b之间有一条边,权值为c。

Output

每组输出占一行,仅输出从1到n的最短路径权值。(保证最短路径存在)

Sample

Input
3 2
1 2 1
1 3 1
1 0

Output
1
0

Dijkstra

用于求单源最短路

#include <iostream>
#include <bits/stdc++.h>
#define Max 999999

using namespace std;

int Map[105][105],dist[105];
bool vis[105];
int n,m;
//vis判断该点的最短路是否确定

void Dijkstra(int x)
{
    int min_num,min_index;
    //初始化dist
    for(int i=1; i<=n; i++)
        dist[i] = Map[1][i];
    //n-1次查找
    for(int i=1; i<n; i++)
    {
        min_num = Max;
        for(int j=1; j<n; j++)
        {
            //判断最小值是否确定
            if(!vis[j] && dist[j]<min_num)
            {
                min_num = dist[j];
                min_index = j;
            }
        }
        vis[min_index] = true;
        for(int i=1; i<=n; i++)
        {
            //判断并修改
            if(dist[i] > dist[min_index]+Map[min_index][i])
                dist[i] = dist[min_index]+Map[min_index][i];
        }
    }
    cout<<dist[x]<<endl;
    //输出1到x的距离
}

int main()
{
    ios::sync_with_stdio(false);

    int a,b,c;
    while(cin>>n>>m)
    {
        memset(Map,Max,sizeof(Map));
        memset(vis,false,sizeof(vis));
        for(int i=1; i<=n; i++)
            Map[i][i] = 0;
        for(int i=0; i<m; i++)
        {
            cin>>a>>b>>c;
            if(Map[a][b]>c)
                Map[a][b] = Map[b][a] = c;
        }
        //初始化Map,vis;

        vis[1] = true;
        Dijkstra(n);
        //1到n的距离
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值