【计算题】(四)不定积分和定积分

题型一 不定积分

积分公式包含 − 1 x 2 f ( 1 x ) -\frac{1}{x^2}f(\frac{1}{x}) x21f(x1) 等固定搭配可凑微分化为积分基本公式

∫ 1 x 2 sin ⁡ 1 x d x = − ∫ sin ⁡ 1 x d ( 1 x ) = cos ⁡ 1 x + C \int \frac{1}{x^2}\sin \frac{1}{x}dx = -\int \sin \frac{1}{x}d(\frac{1}{x})=\cos \frac{1}{x}+C x21sinx1dx=sinx1d(x1)=cosx1+C

( a 2 − x 2 ) m (a^2-x^2)^m (a2x2)m ( x 2 + a 2 ) m (x^2+a^2)^m (x2+a2)m ( x 2 − a 2 ) m (x^2-a^2)^m (x2a2)m ( a x 2 + b x + c ) m (ax^2+bx+c)^m (ax2+bx+c)m t = 三 角 函 数 t=三角函数 t=
分母比分子高2次及2次以上: t = 1 x t=\frac{1}{x} t=x1
复杂函数 a x a^x ax e x e^x ex ln ⁡ x \ln x lnx arcsin ⁡ x \arcsin x arcsinx ( x + 1 ) 2015 (x+1)^{2015} (x+1)2015 t = 复 杂 函 数 t=复杂函数 t=

  • ∫ 1 ( 1 − x 2 ) 3 2 d x , x = sin ⁡ t ; ∫ 1 ( 1 + x 2 ) 2 d x , x = tan ⁡ t ; ∫ 1 x x 2 − 1 d x , x = sec ⁡ t \int \frac{1}{(1-x^2)^{ \frac{3}{2} } }dx,x=\sin t; \int \frac{1}{(1+x^2)^2}dx,x=\tan t; \int \frac{1}{x\sqrt{x^2-1}}dx,x= \sec t (1x2)231dxx=sint(1+x2)21dxx=tantxx21 1dxx=sect

  • ∫ 1 x x 2 − 1 d x = ∫ 1 x 2 1 − 1 x 2 d x , t = 1 x \int \frac{1}{x\sqrt{x^2-1}}dx=\int \frac{1}{x^2\sqrt{1-\frac{1}{x^2} } }dx,t=\frac{1}{x} xx21 1dx=x21x21 1dxt=x1

  • ∫ 1 1 + e x d x , t = e x ; ∫ x + 1 x ( 1 + x e x ) d x = ∫ x e x + e x x e x ( 1 + x e x ) d x , t = x e x \int \frac{1}{1+e^x} dx , t=e^x; \int \frac{x+1}{x(1+xe^x)}dx =\int \frac{xe^x+e^x}{xe^x(1+xe^x)}dx,t=xe^x 1+ex1dx,t=exx(1+xex)x+1dx=xex(1+xex)xex+exdxt=xex

积分公式为多项式时可使用分部积分和表格积分法( ∫ e x P n ( x ) d x \int e^xP_n(x)dx exPn(x)dx, ∫ sin ⁡ x P n ( x ) d x \int \sin xP_n(x)dx sinxPn(x)dx):

  • ∫ x 4 ln ⁡ x d x = 1 5 ∫ ln ⁡ x d ( x 5 ) = 1 5 ( x 5 ln ⁡ x − ∫ x 5 ⋅ 1 x d x ) \int x^4\ln xdx =\frac{1}{5}\int \ln xd(x^5) =\frac{1}{5}(x^5\ln x-\int x^5·\frac{1}{x}dx) x4lnxdx=51lnxd(x5)=51(x5lnxx5x1dx)

  • ∫ ( x 3 + 2 x + 6 ) e 2 x d x = ( x 3 + 2 x + 6 ) ( 1 2 e 2 x ) + ( 3 x 2 + 2 ) ( 1 4 e 2 x ) + . . . + 0 ⋅ ( 1 16 e 2 x ) + C \int (x^3+2x+6)e^{2x}dx =(x^3+2x+6)(\frac{1}{2}e^{2x}) +(3x^2+2)(\frac{1}{4}e^{2x}) +... +0·(\frac{1}{16}e^{2x}) + C (x3+2x+6)e2xdx=(x3+2x+6)(21e2x)+(3x2+2)(41e2x)+...+0(161e2x)+C

u u u 求导 x 3 + 2 x + 6 x^3+2x+6 x3+2x+6 3 x 2 + 2 3x^2+2 3x2+2 6 x 6x 6x 6 6 6 0 0 0
v v v 积分 e 2 x e^{2x} e2x 1 2 e 2 x \frac{1}{2}e^{2x} 21e2x 1 4 e 2 x \frac{1}{4}e^{2x} 41e2x 1 8 e 2 x \frac{1}{8}e^{2x} 81e2x 1 16 e 2 x \frac{1}{16}e^{2x} 161e2x

积分公式包含 \sqrt{} 可分为如下情况:

  • 单个根号: t = t=\sqrt{} t=
  • 同次根号相加、分子分母共轭:乘共轭
  • 不同次根号相加: t = m 和 n 最 小 公 倍 数 t=\sqrt[m和n最小公倍数]{} t=mn
  • ∫ 1 2 x + 5 + 1 d x , ∫ 1 x + 1 3 + 1 d x , ∫ sin ⁡ x d x , t = \int \frac{1}{\sqrt{2x+5} +1}dx,\int \frac{1}{\sqrt[3]{x+1} +1}dx,\int \sin \sqrt{x}dx,t=\sqrt{} 2x+5 +11dx3x+1 +11dxsinx dxt=

  • ∫ x x + 1 x + x + 1 d x = ∫ x x + 1 ( x − x + 1 ) ( x + x + 1 ) ( x + x + 1 ) d x \int \frac{ \sqrt{x} \sqrt{x+1} }{\sqrt{x} + \sqrt{x+1} } dx =\int \frac{ \sqrt{x} \sqrt{x+1}(\sqrt{x} - \sqrt{x+1}) }{(\sqrt{x} + \sqrt{x+1})(\sqrt{x} + \sqrt{x+1}) } dx x +x+1 x x+1 dx=(x +x+1 )(x +x+1 )x x+1 (x x+1 )dx ∫ x 1 + x 1 − x d x = ∫ x 1 + x 1 + x 1 − x 1 + x = ∫ x 1 − x 2 d x + ∫ x 2 1 − x 2 d x \int \frac{x\sqrt{1+x} }{\sqrt{1-x} }dx =\int\frac{x\sqrt{1+x}\sqrt{1+x}}{\sqrt{1-x} \sqrt{1+x}} =\int \frac{x}{\sqrt{1-x^2} } dx+ \int \frac{x^2}{\sqrt{1-x^2} } dx 1x x1+x dx=1x 1+x x1+x 1+x =1x2 xdx+1x2 x2dx

  • ∫ 1 x + x 3 d x , t = x 6 \int \frac{1}{\sqrt{x}+\sqrt[3]{x}} dx,t=\sqrt[6]{x} x +3x 1dxt=6x

此外,积分包括有理函数积分和三角函数积分。

题型二 定积分

对称区间

  • 奇偶函数 ∫ − 1 1 x 2 + arctan ⁡ x 1 + 1 − x 2 d x = ∫ − 1 1 x 2 1 + 1 − x 2 d x + ∫ − 1 1 arctan ⁡ x 1 + 1 − x 2 d x = 2 ∫ 0 1 x 2 1 + 1 − x 2 d x \int_{-1}^{1} \frac{x^2+ \arctan x}{1+\sqrt{1-x^2} }dx =\int_{-1}^{1} \frac{x^2}{1+\sqrt{1-x^2} }dx + \int_{-1}^{1} \frac{\arctan x}{1+\sqrt{1-x^2} }dx =2\int_{0}^{1} \frac{x^2}{1+\sqrt{1-x^2}}dx 111+1x2 x2+arctanxdx=111+1x2 x2dx+111+1x2 arctanxdx=2011+1x2 x2dx

  • 非奇偶函数 ∫ − π π sin ⁡ 8 x 1 + e − x d x = ∫ 0 π [ sin ⁡ 8 x 1 + e − x + sin ⁡ 8 x 1 + e x ] d x = ∫ 0 π sin ⁡ 8 x [ 1 1 + e − x + 1 1 + e x ] d x = ∫ 0 π sin ⁡ 8 d x \int_{-\pi}^{\pi} \frac{\sin^{8} x}{1+e^{-x} }dx =\int_{0}^{\pi} [\frac{\sin^{8} x}{1+e^{-x} } + \frac{\sin^{8} x}{1+e^{x} } ]dx =\int_{0}^{\pi} \sin^{8} x [\frac{1}{1+e^{-x} } + \frac{1}{1+e^x} ]dx =\int_{0}^{\pi} \sin^{8} dx ππ1+exsin8xdx=0π[1+exsin8x+1+exsin8x]dx=0πsin8x[1+ex1+1+ex1]dx=0πsin8dx

周期函数

∫ 0 2016 π 1 − cos ⁡ ( 2 x ) d x = 2016 ∫ 0 π 1 − cos ⁡ ( 2 x ) d x = 2016 ∫ 0 π 2 sin ⁡ x d x = 4032 2 \int_{0}^{2016\pi}\sqrt{1-\cos (2x)}dx =2016\int_{0}^{\pi}\sqrt{1-\cos (2x)}dx =2016\int_{0}^{\pi}\sqrt{2}\sin xdx =4032\sqrt{2} 02016π1cos(2x) dx=20160π1cos(2x) dx=20160π2 sinxdx=40322

积分区间 ∫ 0 π \int_{0}^{\pi} 0π 积分函数 sin ⁡ x \sin x sinx

  • I = ∫ 0 π x sin ⁡ n x sin ⁡ n x + cos ⁡ n x d x = ∫ 0 π x sin ⁡ n x sin ⁡ n x + ( 1 − sin ⁡ 2 x ) n 2 d x = π ∫ 0 π 2 sin ⁡ n x sin ⁡ n x + ( 1 − sin ⁡ 2 x ) n 2 d x I=\int_{0}^{\pi} \frac{x\sin^{n} x}{\sin^{n} x+\cos^{n}x} dx =\int_{0}^{\pi} x\frac{\sin^{n} x}{\sin^{n} x+(1-\sin^{2} x)^{\frac{n}{2}} }dx =\pi \int_{0}^{\frac{\pi}{2} } \frac{\sin^{n} x}{\sin^{n} x+(1-\sin^{2} x)^{\frac{n}{2}} }dx I=0πsinnx+cosnxxsinnxdx=0πxsinnx+(1sin2x)2nsinnxdx=π02πsinnx+(1sin2x)2nsinnxdx

由 于 ∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x , I = π ∫ 0 π 2 cos ⁡ n x cos ⁡ n x + ( 1 − cos ⁡ 2 x ) n 2 d x , 2 I = π ∫ 0 π 2 d x 由于 \int_{0}^{\frac{\pi}{2} }f(\sin x)dx =\int_{0}^{\frac{\pi}{2} }f(\cos x)dx, I=\pi \int_{0}^{\frac{\pi}{2} } \frac{\cos^{n} x}{\cos^{n} x+(1-\cos^{2} x)^{\frac{n}{2}} }dx, 2I = \pi \int_{0}^{\frac{\pi}{2} }dx 02πf(sinx)dx=02πf(cosx)dxI=π02πcosnx+(1cos2x)2ncosnxdx2I=π02πdx

  • ∫ 0 π x sin ⁡ x 1 + cos ⁡ 2 x d x = ∫ 0 π x sin ⁡ x 2 − sin ⁡ 2 x d x = π 2 ∫ 0 π sin ⁡ x 2 − sin ⁡ 2 x = − π 2 ∫ 0 π 1 1 + cos ⁡ 2 x d ( cos ⁡ x ) \int_{0}^{\pi} \frac{x\sin x}{1+\cos^{2}x} dx =\int_{0}^{\pi} x\frac{\sin x}{2-\sin^{2}x }dx =\frac{\pi}{2} \int_{0}^{\pi }\frac{\sin x}{2-\sin^{2}x } =-\frac{\pi}{2} \int_{0}^{\pi }\frac{1}{1+\cos^{2}x}d(\cos x) 0π1+cos2xxsinxdx=0πx2sin2xsinxdx=2π0π2sin2xsinx=2π0π1+cos2x1d(cosx)

区间再现公式 x = a + b − t x=a+b-t x=a+bt

I = ∫ 0 π x sin ⁡ x 1 + cos ⁡ 2 x d x = ∫ 0 π ( π − t ) sin ⁡ ( π − t ) 1 + cos ⁡ 2 ( π − t ) d ( π − t ) = ∫ 0 π ( π − x ) sin ⁡ ( x ) 1 + cos ⁡ 2 ( x ) d x I=\int_{0}^{\pi} \frac{x\sin x}{1+\cos^{2}x} dx =\int_{0}^{\pi} \frac{ (\pi - t) \sin (\pi-t)}{1+\cos^{2}(\pi-t)} d(\pi-t) =\int_{0}^{\pi} \frac{ (\pi - x) \sin (x)}{1+\cos^{2}(x)} dx I=0π1+cos2xxsinxdx=0π1+cos2(πt)(πt)sin(πt)d(πt)=0π1+cos2(x)(πx)sin(x)dx

2 I = π ∫ 0 π sin ⁡ x 1 + cos ⁡ 2 x d x = − π ∫ 0 π 1 1 + cos ⁡ 2 x d ( cos ⁡ x ) , I = − π 2 ∫ 0 π 1 1 + cos ⁡ 2 x d ( cos ⁡ x ) 2I=\pi \int_{0}^{\pi} \frac{\sin x}{1+\cos^{2}x} dx =-\pi \int_{0}^{\pi} \frac{1}{1+\cos^{2}x}d(\cos x), I=-\frac{\pi}{2} \int_{0}^{\pi }\frac{1}{1+\cos^{2}x}d(\cos x) 2I=π0π1+cos2xsinxdx=π0π1+cos2x1d(cosx)I=2π0π1+cos2x1d(cosx)

积分区间 ∫ 0 2 π \int_{0}^{2\pi} 02π: 移动区间、拆分区间、区间再现

  • ∫ 0 2 π 1 1 + cos ⁡ x 2 d x = ∫ − π π 1 1 + cos ⁡ x 2 d x = 2 ∫ 0 π 1 1 + cos ⁡ x 2 d x \int_{0}^{2\pi} \frac{1}{1+\cos x^2}dx = \int_{-\pi}^{\pi} \frac{1}{1+\cos x^2}dx =2\int_{0}^{\pi} \frac{1}{1+\cos x^2}dx 02π1+cosx21dx=ππ1+cosx21dx=20π1+cosx21dx ∫ 0 π 1 1 + cos ⁡ x 2 d x = ∫ 0 π 2 1 1 + cos ⁡ x 2 d x + ∫ π 2 π 1 1 + cos ⁡ x 2 d x \int_{0}^{\pi} \frac{1}{1+\cos x^2}dx =\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos x^2} dx +\int_{\frac{\pi}{2}}^{\pi} \frac{1}{1+\cos x^2} dx 0π1+cosx21dx=02π1+cosx21dx+2ππ1+cosx21dx ∫ π 2 π 1 1 + cos ⁡ x 2 d x = ∫ π 2 0 1 1 + cos ⁡ ( π − x ) 2 d ( π − x ) = ∫ 0 π 2 1 1 + cos ⁡ x 2 d x \int_{\frac{\pi}{2}}^{\pi} \frac{1}{1+\cos x^2} dx =\int_{\frac{\pi}{2}}^{0} \frac{1}{1+\cos (\pi-x)^2} d(\pi-x) =\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos x^2} dx 2ππ1+cosx21dx=2π01+cos(πx)21d(πx)=02π1+cosx21dx

  • ∫ 0 2 π 1 + sin ⁡ x sin ⁡ x d x = ∫ 0 2 π ∣ sin ⁡ x 2 + cos ⁡ x 2 ∣ 2 sin ⁡ x 2 cos ⁡ x 2 d x = 4 ∫ 0 π ∣ sin ⁡ x + cos ⁡ x ∣ sin ⁡ x cos ⁡ x d x \int_{0}^{2\pi} \sqrt{1+\sin x} \sin x dx = \int_{0}^{2\pi} |\sin \frac{x}{2}+\cos \frac{x}{2}| 2\sin \frac{x}{2}\cos \frac{x}{2} dx = 4 \int_{0}^{\pi} |\sin x+\cos x| \sin x \cos x dx 02π1+sinx sinxdx=02πsin2x+cos2x2sin2xcos2xdx=40πsinx+cosxsinxcosxdx ∫ 0 π ∣ sin ⁡ x + cos ⁡ x ∣ sin ⁡ x cos ⁡ x d x = ∫ − π 4 3 π 4 ( sin ⁡ x + cos ⁡ x ) sin ⁡ x cos ⁡ x d x \int_{0}^{\pi} |\sin x+\cos x| \sin x \cos x dx = \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} (\sin x+\cos x) \sin x \cos x dx 0πsinx+cosxsinxcosxdx=4π43π(sinx+cosx)sinxcosxdx

积分区间 ∫ 0 π 4 \int_{0}^{\frac{\pi}{4}} 04π

∫ 0 π 4 1 1 + sin ⁡ x d x = ∫ 0 π 4 1 − sin ⁡ x 1 − sin ⁡ 2 x d x = ∫ 0 π 4 1 cos ⁡ 2 x d x + ∫ 0 π 4 1 cos ⁡ 2 x d ( cos ⁡ x ) \int_{0}^{\frac{\pi}{4} } \frac{1}{1+\sin x} dx = \int_{0}^{\frac{\pi}{4} } \frac{1-\sin x}{1-\sin^2 x} dx = \int_{0}^{\frac{\pi}{4} } \frac{1}{\cos^2 x} dx +\int_{0}^{\frac{\pi}{4} } \frac{1}{\cos^2 x} d(\cos x) 04π1+sinx1dx=04π1sin2x1sinxdx=04πcos2x1dx+04πcos2x1d(cosx)

tan ⁡ ( π 4 − x ) = 1 − tan ⁡ x 1 + tan ⁡ x , cos ⁡ ( π 4 − x ) = 2 2 ( sin ⁡ x + cos ⁡ x ) \tan(\frac{\pi}{4}-x)=\frac{1-\tan x}{1+\tan x},\cos(\frac{\pi}{4}-x)=\frac{\sqrt{2} }{2}(\sin x+\cos x) tan(4πx)=1+tanx1tanxcos(4πx)=22 (sinx+cosx)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值