题型一 不定积分
积分公式包含 − 1 x 2 f ( 1 x ) -\frac{1}{x^2}f(\frac{1}{x}) −x21f(x1) 等固定搭配可凑微分化为积分基本公式
∫ 1 x 2 sin 1 x d x = − ∫ sin 1 x d ( 1 x ) = cos 1 x + C \int \frac{1}{x^2}\sin \frac{1}{x}dx = -\int \sin \frac{1}{x}d(\frac{1}{x})=\cos \frac{1}{x}+C ∫x21sinx1dx=−∫sinx1d(x1)=cosx1+C
( a 2 − x 2 ) m (a^2-x^2)^m (a2−x2)m、 ( x 2 + a 2 ) m (x^2+a^2)^m (x2+a2)m、 ( x 2 − a 2 ) m (x^2-a^2)^m (x2−a2)m 和 ( a x 2 + b x + c ) m (ax^2+bx+c)^m (ax2+bx+c)m: t = 三 角 函 数 t=三角函数 t=三角函数
分母比分子高2次及2次以上: t = 1 x t=\frac{1}{x} t=x1
复杂函数 a x a^x ax、 e x e^x ex、 ln x \ln x lnx、 arcsin x \arcsin x arcsinx 和 ( x + 1 ) 2015 (x+1)^{2015} (x+1)2015: t = 复 杂 函 数 t=复杂函数 t=复杂函数
-
∫ 1 ( 1 − x 2 ) 3 2 d x , x = sin t ; ∫ 1 ( 1 + x 2 ) 2 d x , x = tan t ; ∫ 1 x x 2 − 1 d x , x = sec t \int \frac{1}{(1-x^2)^{ \frac{3}{2} } }dx,x=\sin t; \int \frac{1}{(1+x^2)^2}dx,x=\tan t; \int \frac{1}{x\sqrt{x^2-1}}dx,x= \sec t ∫(1−x2)231dx,x=sint;∫(1+x2)21dx,x=tant;∫xx2−11dx,x=sect
-
∫ 1 x x 2 − 1 d x = ∫ 1 x 2 1 − 1 x 2 d x , t = 1 x \int \frac{1}{x\sqrt{x^2-1}}dx=\int \frac{1}{x^2\sqrt{1-\frac{1}{x^2} } }dx,t=\frac{1}{x} ∫xx2−11dx=∫x21−x211dx,t=x1
-
∫ 1 1 + e x d x , t = e x ; ∫ x + 1 x ( 1 + x e x ) d x = ∫ x e x + e x x e x ( 1 + x e x ) d x , t = x e x \int \frac{1}{1+e^x} dx , t=e^x; \int \frac{x+1}{x(1+xe^x)}dx =\int \frac{xe^x+e^x}{xe^x(1+xe^x)}dx,t=xe^x ∫1+ex1dx,t=ex;∫x(1+xex)x+1dx=∫xex(1+xex)xex+exdx,t=xex
积分公式为多项式时可使用分部积分和表格积分法( ∫ e x P n ( x ) d x \int e^xP_n(x)dx ∫exPn(x)dx, ∫ sin x P n ( x ) d x \int \sin xP_n(x)dx ∫sinxPn(x)dx):
-
∫ x 4 ln x d x = 1 5 ∫ ln x d ( x 5 ) = 1 5 ( x 5 ln x − ∫ x 5 ⋅ 1 x d x ) \int x^4\ln xdx =\frac{1}{5}\int \ln xd(x^5) =\frac{1}{5}(x^5\ln x-\int x^5·\frac{1}{x}dx) ∫x4lnxdx=51∫lnxd(x5)=51(x5lnx−∫x5⋅x1dx)
-
∫ ( x 3 + 2 x + 6 ) e 2 x d x = ( x 3 + 2 x + 6 ) ( 1 2 e 2 x ) + ( 3 x 2 + 2 ) ( 1 4 e 2 x ) + . . . + 0 ⋅ ( 1 16 e 2 x ) + C \int (x^3+2x+6)e^{2x}dx =(x^3+2x+6)(\frac{1}{2}e^{2x}) +(3x^2+2)(\frac{1}{4}e^{2x}) +... +0·(\frac{1}{16}e^{2x}) + C ∫(x3+2x+6)e2xdx=(x3+2x+6)(21e2x)+(3x2+2)(41e2x)+...+0⋅(161e2x)+C
u u u 求导 | x 3 + 2 x + 6 x^3+2x+6 x3+2x+6 | 3 x 2 + 2 3x^2+2 3x2+2 | 6 x 6x 6x | 6 6 6 | 0 0 0 |
---|---|---|---|---|---|
v v v 积分 | e 2 x e^{2x} e2x | 1 2 e 2 x \frac{1}{2}e^{2x} 21e2x | 1 4 e 2 x \frac{1}{4}e^{2x} 41e2x | 1 8 e 2 x \frac{1}{8}e^{2x} 81e2x | 1 16 e 2 x \frac{1}{16}e^{2x} 161e2x |
积分公式包含 \sqrt{} 可分为如下情况:
- 单个根号: t = t=\sqrt{} t=
- 同次根号相加、分子分母共轭:乘共轭
- 不同次根号相加: t = m 和 n 最 小 公 倍 数 t=\sqrt[m和n最小公倍数]{} t=m和n最小公倍数
-
∫ 1 2 x + 5 + 1 d x , ∫ 1 x + 1 3 + 1 d x , ∫ sin x d x , t = \int \frac{1}{\sqrt{2x+5} +1}dx,\int \frac{1}{\sqrt[3]{x+1} +1}dx,\int \sin \sqrt{x}dx,t=\sqrt{} ∫2x+5+11dx,∫3x+1+11dx,∫sinxdx,t=
-
∫ x x + 1 x + x + 1 d x = ∫ x x + 1 ( x − x + 1 ) ( x + x + 1 ) ( x + x + 1 ) d x \int \frac{ \sqrt{x} \sqrt{x+1} }{\sqrt{x} + \sqrt{x+1} } dx =\int \frac{ \sqrt{x} \sqrt{x+1}(\sqrt{x} - \sqrt{x+1}) }{(\sqrt{x} + \sqrt{x+1})(\sqrt{x} + \sqrt{x+1}) } dx ∫x+x+1xx+1dx=∫(x+x+1)(x+x+1)xx+1(x−x+1)dx ∫ x 1 + x 1 − x d x = ∫ x 1 + x 1 + x 1 − x 1 + x = ∫ x 1 − x 2 d x + ∫ x 2 1 − x 2 d x \int \frac{x\sqrt{1+x} }{\sqrt{1-x} }dx =\int\frac{x\sqrt{1+x}\sqrt{1+x}}{\sqrt{1-x} \sqrt{1+x}} =\int \frac{x}{\sqrt{1-x^2} } dx+ \int \frac{x^2}{\sqrt{1-x^2} } dx ∫1−xx1+xdx=∫1−x1+xx1+x1+x=∫1−x2xdx+∫1−x2x2dx
-
∫ 1 x + x 3 d x , t = x 6 \int \frac{1}{\sqrt{x}+\sqrt[3]{x}} dx,t=\sqrt[6]{x} ∫x+3x1dx,t=6x
此外,积分包括有理函数积分和三角函数积分。
题型二 定积分
对称区间
-
奇偶函数: ∫ − 1 1 x 2 + arctan x 1 + 1 − x 2 d x = ∫ − 1 1 x 2 1 + 1 − x 2 d x + ∫ − 1 1 arctan x 1 + 1 − x 2 d x = 2 ∫ 0 1 x 2 1 + 1 − x 2 d x \int_{-1}^{1} \frac{x^2+ \arctan x}{1+\sqrt{1-x^2} }dx =\int_{-1}^{1} \frac{x^2}{1+\sqrt{1-x^2} }dx + \int_{-1}^{1} \frac{\arctan x}{1+\sqrt{1-x^2} }dx =2\int_{0}^{1} \frac{x^2}{1+\sqrt{1-x^2}}dx ∫−111+1−x2x2+arctanxdx=∫−111+1−x2x2dx+∫−111+1−x2arctanxdx=2∫011+1−x2x2dx
-
非奇偶函数: ∫ − π π sin 8 x 1 + e − x d x = ∫ 0 π [ sin 8 x 1 + e − x + sin 8 x 1 + e x ] d x = ∫ 0 π sin 8 x [ 1 1 + e − x + 1 1 + e x ] d x = ∫ 0 π sin 8 d x \int_{-\pi}^{\pi} \frac{\sin^{8} x}{1+e^{-x} }dx =\int_{0}^{\pi} [\frac{\sin^{8} x}{1+e^{-x} } + \frac{\sin^{8} x}{1+e^{x} } ]dx =\int_{0}^{\pi} \sin^{8} x [\frac{1}{1+e^{-x} } + \frac{1}{1+e^x} ]dx =\int_{0}^{\pi} \sin^{8} dx ∫−ππ1+e−xsin8xdx=∫0π[1+e−xsin8x+1+exsin8x]dx=∫0πsin8x[1+e−x1+1+ex1]dx=∫0πsin8dx
周期函数
∫ 0 2016 π 1 − cos ( 2 x ) d x = 2016 ∫ 0 π 1 − cos ( 2 x ) d x = 2016 ∫ 0 π 2 sin x d x = 4032 2 \int_{0}^{2016\pi}\sqrt{1-\cos (2x)}dx =2016\int_{0}^{\pi}\sqrt{1-\cos (2x)}dx =2016\int_{0}^{\pi}\sqrt{2}\sin xdx =4032\sqrt{2} ∫02016π1−cos(2x)dx=2016∫0π1−cos(2x)dx=2016∫0π2sinxdx=40322
积分区间 ∫ 0 π \int_{0}^{\pi} ∫0π 积分函数 sin x \sin x sinx
- I = ∫ 0 π x sin n x sin n x + cos n x d x = ∫ 0 π x sin n x sin n x + ( 1 − sin 2 x ) n 2 d x = π ∫ 0 π 2 sin n x sin n x + ( 1 − sin 2 x ) n 2 d x I=\int_{0}^{\pi} \frac{x\sin^{n} x}{\sin^{n} x+\cos^{n}x} dx =\int_{0}^{\pi} x\frac{\sin^{n} x}{\sin^{n} x+(1-\sin^{2} x)^{\frac{n}{2}} }dx =\pi \int_{0}^{\frac{\pi}{2} } \frac{\sin^{n} x}{\sin^{n} x+(1-\sin^{2} x)^{\frac{n}{2}} }dx I=∫0πsinnx+cosnxxsinnxdx=∫0πxsinnx+(1−sin2x)2nsinnxdx=π∫02πsinnx+(1−sin2x)2nsinnxdx
由 于 ∫ 0 π 2 f ( sin x ) d x = ∫ 0 π 2 f ( cos x ) d x , I = π ∫ 0 π 2 cos n x cos n x + ( 1 − cos 2 x ) n 2 d x , 2 I = π ∫ 0 π 2 d x 由于 \int_{0}^{\frac{\pi}{2} }f(\sin x)dx =\int_{0}^{\frac{\pi}{2} }f(\cos x)dx, I=\pi \int_{0}^{\frac{\pi}{2} } \frac{\cos^{n} x}{\cos^{n} x+(1-\cos^{2} x)^{\frac{n}{2}} }dx, 2I = \pi \int_{0}^{\frac{\pi}{2} }dx 由于∫02πf(sinx)dx=∫02πf(cosx)dx,I=π∫02πcosnx+(1−cos2x)2ncosnxdx,2I=π∫02πdx
- ∫ 0 π x sin x 1 + cos 2 x d x = ∫ 0 π x sin x 2 − sin 2 x d x = π 2 ∫ 0 π sin x 2 − sin 2 x = − π 2 ∫ 0 π 1 1 + cos 2 x d ( cos x ) \int_{0}^{\pi} \frac{x\sin x}{1+\cos^{2}x} dx =\int_{0}^{\pi} x\frac{\sin x}{2-\sin^{2}x }dx =\frac{\pi}{2} \int_{0}^{\pi }\frac{\sin x}{2-\sin^{2}x } =-\frac{\pi}{2} \int_{0}^{\pi }\frac{1}{1+\cos^{2}x}d(\cos x) ∫0π1+cos2xxsinxdx=∫0πx2−sin2xsinxdx=2π∫0π2−sin2xsinx=−2π∫0π1+cos2x1d(cosx)
区间再现公式 x = a + b − t x=a+b-t x=a+b−t
I = ∫ 0 π x sin x 1 + cos 2 x d x = ∫ 0 π ( π − t ) sin ( π − t ) 1 + cos 2 ( π − t ) d ( π − t ) = ∫ 0 π ( π − x ) sin ( x ) 1 + cos 2 ( x ) d x I=\int_{0}^{\pi} \frac{x\sin x}{1+\cos^{2}x} dx =\int_{0}^{\pi} \frac{ (\pi - t) \sin (\pi-t)}{1+\cos^{2}(\pi-t)} d(\pi-t) =\int_{0}^{\pi} \frac{ (\pi - x) \sin (x)}{1+\cos^{2}(x)} dx I=∫0π1+cos2xxsinxdx=∫0π1+cos2(π−t)(π−t)sin(π−t)d(π−t)=∫0π1+cos2(x)(π−x)sin(x)dx
2 I = π ∫ 0 π sin x 1 + cos 2 x d x = − π ∫ 0 π 1 1 + cos 2 x d ( cos x ) , I = − π 2 ∫ 0 π 1 1 + cos 2 x d ( cos x ) 2I=\pi \int_{0}^{\pi} \frac{\sin x}{1+\cos^{2}x} dx =-\pi \int_{0}^{\pi} \frac{1}{1+\cos^{2}x}d(\cos x), I=-\frac{\pi}{2} \int_{0}^{\pi }\frac{1}{1+\cos^{2}x}d(\cos x) 2I=π∫0π1+cos2xsinxdx=−π∫0π1+cos2x1d(cosx),I=−2π∫0π1+cos2x1d(cosx)
积分区间 ∫ 0 2 π \int_{0}^{2\pi} ∫02π: 移动区间、拆分区间、区间再现
-
∫ 0 2 π 1 1 + cos x 2 d x = ∫ − π π 1 1 + cos x 2 d x = 2 ∫ 0 π 1 1 + cos x 2 d x \int_{0}^{2\pi} \frac{1}{1+\cos x^2}dx = \int_{-\pi}^{\pi} \frac{1}{1+\cos x^2}dx =2\int_{0}^{\pi} \frac{1}{1+\cos x^2}dx ∫02π1+cosx21dx=∫−ππ1+cosx21dx=2∫0π1+cosx21dx ∫ 0 π 1 1 + cos x 2 d x = ∫ 0 π 2 1 1 + cos x 2 d x + ∫ π 2 π 1 1 + cos x 2 d x \int_{0}^{\pi} \frac{1}{1+\cos x^2}dx =\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos x^2} dx +\int_{\frac{\pi}{2}}^{\pi} \frac{1}{1+\cos x^2} dx ∫0π1+cosx21dx=∫02π1+cosx21dx+∫2ππ1+cosx21dx ∫ π 2 π 1 1 + cos x 2 d x = ∫ π 2 0 1 1 + cos ( π − x ) 2 d ( π − x ) = ∫ 0 π 2 1 1 + cos x 2 d x \int_{\frac{\pi}{2}}^{\pi} \frac{1}{1+\cos x^2} dx =\int_{\frac{\pi}{2}}^{0} \frac{1}{1+\cos (\pi-x)^2} d(\pi-x) =\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos x^2} dx ∫2ππ1+cosx21dx=∫2π01+cos(π−x)21d(π−x)=∫02π1+cosx21dx
-
∫ 0 2 π 1 + sin x sin x d x = ∫ 0 2 π ∣ sin x 2 + cos x 2 ∣ 2 sin x 2 cos x 2 d x = 4 ∫ 0 π ∣ sin x + cos x ∣ sin x cos x d x \int_{0}^{2\pi} \sqrt{1+\sin x} \sin x dx = \int_{0}^{2\pi} |\sin \frac{x}{2}+\cos \frac{x}{2}| 2\sin \frac{x}{2}\cos \frac{x}{2} dx = 4 \int_{0}^{\pi} |\sin x+\cos x| \sin x \cos x dx ∫02π1+sinxsinxdx=∫02π∣sin2x+cos2x∣2sin2xcos2xdx=4∫0π∣sinx+cosx∣sinxcosxdx ∫ 0 π ∣ sin x + cos x ∣ sin x cos x d x = ∫ − π 4 3 π 4 ( sin x + cos x ) sin x cos x d x \int_{0}^{\pi} |\sin x+\cos x| \sin x \cos x dx = \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} (\sin x+\cos x) \sin x \cos x dx ∫0π∣sinx+cosx∣sinxcosxdx=∫−4π43π(sinx+cosx)sinxcosxdx
积分区间 ∫ 0 π 4 \int_{0}^{\frac{\pi}{4}} ∫04π
∫ 0 π 4 1 1 + sin x d x = ∫ 0 π 4 1 − sin x 1 − sin 2 x d x = ∫ 0 π 4 1 cos 2 x d x + ∫ 0 π 4 1 cos 2 x d ( cos x ) \int_{0}^{\frac{\pi}{4} } \frac{1}{1+\sin x} dx = \int_{0}^{\frac{\pi}{4} } \frac{1-\sin x}{1-\sin^2 x} dx = \int_{0}^{\frac{\pi}{4} } \frac{1}{\cos^2 x} dx +\int_{0}^{\frac{\pi}{4} } \frac{1}{\cos^2 x} d(\cos x) ∫04π1+sinx1dx=∫04π1−sin2x1−sinxdx=∫04πcos2x1dx+∫04πcos2x1d(cosx)
tan ( π 4 − x ) = 1 − tan x 1 + tan x , cos ( π 4 − x ) = 2 2 ( sin x + cos x ) \tan(\frac{\pi}{4}-x)=\frac{1-\tan x}{1+\tan x},\cos(\frac{\pi}{4}-x)=\frac{\sqrt{2} }{2}(\sin x+\cos x) tan(4π−x)=1+tanx1−tanx,cos(4π−x)=22(sinx+cosx)