张宇1000题高等数学 第八章 一元函数积分学的概念与性质

B B B

5.设常数 a > 0 a>0 a>0,积分 I 1 = ∫ 0 π 2 cos ⁡ x 1 + x α d x , I 2 = ∫ 0 π 2 sin ⁡ x 1 + x α d x I_1=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos x}{1+x^\alpha}\mathrm{d}x,I_2=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\sin x}{1+x^\alpha}\mathrm{d}x I1=02π1+xαcosxdx,I2=02π1+xαsinxdx,则(  )
( A ) I 1 > I 2 ; (A)I_1>I_2; (A)I1>I2;
( B ) I 1 < I 2 ; (B)I_1<I_2; (B)I1<I2;
( C ) I 1 = I 2 ; (C)I_1=I_2; (C)I1=I2;
( D ) I 1 (D)I_1 (D)I1 I 2 I_2 I2的大小与 α \alpha α有关。


I 1 − I 2 = ∫ 0 π 2 cos ⁡ x − sin ⁡ x 1 + x α d x = ∫ 0 π 4 cos ⁡ x − sin ⁡ x 1 + x α d x + ∫ π 4 π 2 cos ⁡ x − sin ⁡ x 1 + x α d x = ∫ 0 π 4 cos ⁡ x − sin ⁡ x 1 + x α d x + ∫ π 4 0 cos ⁡ t − sin ⁡ t 1 + ( π 2 − t ) α ( − d t ) = ∫ 0 π 4 ( cos ⁡ x − sin ⁡ x ) [ 1 1 + x α − 1 1 + ( π 2 − x ) α ] d x = ∫ 0 π 4 ( cos ⁡ x − sin ⁡ x ) ( π 2 − x ) α − x α ( 1 + x α ) [ 1 + ( π 2 − x ) α ] d x . \begin{aligned} I_1-I_2&=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos x-\sin x}{1+x^\alpha}\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{\cos x-\sin x}{1+x^\alpha}\mathrm{d}x+\displaystyle\int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\cfrac{\cos x-\sin x}{1+x^\alpha}\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{\cos x-\sin x}{1+x^\alpha}\mathrm{d}x+\displaystyle\int^0_{\frac{\pi}{4}}\cfrac{\cos t-\sin t}{1+\left(\cfrac{\pi}{2}-t\right)^\alpha}(-\mathrm{d}t)\\ &=\displaystyle\int^{\frac{\pi}{4}}_0(\cos x-\sin x)\left[\cfrac{1}{1+x^\alpha}-\cfrac{1}{1+\left(\cfrac{\pi}{2}-x\right)^\alpha}\right]\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0(\cos x-\sin x)\cfrac{\left(\cfrac{\pi}{2}-x\right)^\alpha-x^\alpha}{(1+x^\alpha)\left[1+\left(\cfrac{\pi}{2}-x\right)^\alpha\right]}\mathrm{d}x. \end{aligned} I1I2=02π1+xαcosxsinxdx=04π1+xαcosxsinxd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值