B B B组
5.设常数 a > 0 a>0 a>0,积分 I 1 = ∫ 0 π 2 cos x 1 + x α d x , I 2 = ∫ 0 π 2 sin x 1 + x α d x I_1=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos x}{1+x^\alpha}\mathrm{d}x,I_2=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\sin x}{1+x^\alpha}\mathrm{d}x I1=∫02π1+xαcosxdx,I2=∫02π1+xαsinxdx,则( )
( A ) I 1 > I 2 ; (A)I_1>I_2; (A)I1>I2;
( B ) I 1 < I 2 ; (B)I_1<I_2; (B)I1<I2;
( C ) I 1 = I 2 ; (C)I_1=I_2; (C)I1=I2;
( D ) I 1 (D)I_1 (D)I1与 I 2 I_2 I2的大小与 α \alpha α有关。
解
I 1 − I 2 = ∫ 0 π 2 cos x − sin x 1 + x α d x = ∫ 0 π 4 cos x − sin x 1 + x α d x + ∫ π 4 π 2 cos x − sin x 1 + x α d x = ∫ 0 π 4 cos x − sin x 1 + x α d x + ∫ π 4 0 cos t − sin t 1 + ( π 2 − t ) α ( − d t ) = ∫ 0 π 4 ( cos x − sin x ) [ 1 1 + x α − 1 1 + ( π 2 − x ) α ] d x = ∫ 0 π 4 ( cos x − sin x ) ( π 2 − x ) α − x α ( 1 + x α ) [ 1 + ( π 2 − x ) α ] d x . \begin{aligned} I_1-I_2&=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos x-\sin x}{1+x^\alpha}\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{\cos x-\sin x}{1+x^\alpha}\mathrm{d}x+\displaystyle\int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\cfrac{\cos x-\sin x}{1+x^\alpha}\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{\cos x-\sin x}{1+x^\alpha}\mathrm{d}x+\displaystyle\int^0_{\frac{\pi}{4}}\cfrac{\cos t-\sin t}{1+\left(\cfrac{\pi}{2}-t\right)^\alpha}(-\mathrm{d}t)\\ &=\displaystyle\int^{\frac{\pi}{4}}_0(\cos x-\sin x)\left[\cfrac{1}{1+x^\alpha}-\cfrac{1}{1+\left(\cfrac{\pi}{2}-x\right)^\alpha}\right]\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0(\cos x-\sin x)\cfrac{\left(\cfrac{\pi}{2}-x\right)^\alpha-x^\alpha}{(1+x^\alpha)\left[1+\left(\cfrac{\pi}{2}-x\right)^\alpha\right]}\mathrm{d}x. \end{aligned} I1−I2=∫02π1+xαcosx−sinxdx=∫04π1+xαcosx−sinxd