基本定理
1. 零点介值
介值定理:当 m ≤ f ( x ) ≤ M m≤f(x)≤M m≤f(x)≤M,且 m ≤ μ ≤ M m≤\mu≤M m≤μ≤M,则 ∃ ϵ ∈ [ a , b ] \exists \epsilon \in [a,b] ∃ϵ∈[a,b],使 f ( ϵ ) = μ f(\epsilon)=\mu f(ϵ)=μ
证:假设不
∃
ϵ
∈
[
a
,
b
]
\exists \epsilon \in [a,b]
∃ϵ∈[a,b],使得
f
(
ϵ
)
=
0
f(\epsilon)=0
f(ϵ)=0,则
f
(
x
)
f(x)
f(x) 在
[
a
,
b
]
[a,b]
[a,b] 恒大于0或恒小于0
不妨设 f ( x ) > 0 , ∀ x ∈ [ a , b ] f(x)>0, \forall x \in [a,b] f(x)>0,∀x∈[a,b], 因 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上连续,故 f ( x ) f(x) f(x) 有最小值 f ( x 2 ) = m f(x_2)=m f(x2)=m
又 ∣ f ( y ) ∣ ≤ 1 2 ∣ f ( x ) ∣ |f(y)|≤\frac{1}{2}|f(x)| ∣f(y)∣≤21∣f(x)∣,所以 ∃ x 3 ∈ [ a , b ] , ∣ f ( x 3 ) ∣ ≤ 1 2 ∣ f ( x 2 ) ∣ \exists x_3 \in [a,b], |f(x_3)|≤\frac{1}{2}|f(x_2)| ∃x3∈[a,b],∣f(x3)∣≤21∣f(x2)∣,即 f ( x 3 ) ≤ 1 2 f ( x 2 ) = m f(x_3)≤\frac{1}{2}f(x_2)=m f(x3)≤21f(x2)=m,矛盾故原命题成立
零点定理:当 f ( a ) ⋅ f ( b ) < 0 f(a)·f(b)<0 f(a)⋅f(b)<0 时,存在 ϵ ∈ ( a , b ) \epsilon \in (a,b) ϵ∈(a,b),使得 f ( ϵ ) = 0 f(\epsilon)=0 f(ϵ)=0
存在性:奇次多项式至少 1 1 1 个、零点定理 f ( ϵ ) = 0 f(\epsilon)=0 f(ϵ)=0
唯一性:单调性、罗尔原话 f ( m ) ( x ) ≠ 0 f^{(m)}(x)≠0 f(m)(x)=0,则 f ( x ) = 0 f(x)=0 f(x)=0 至多 m m m 个实根
奇次+罗尔原话
若 3 a 2 − 5 b < 0 3a^2-5b<0 3a2−5b<0,求方程 x 5 + 2 a x 3 + 3 b x + 4 c = 0 x^5+2ax^3+3bx+4c=0 x5+2ax3+3bx+4c=0 的实根个数。
证:因为 f ( x ) = x 5 + 2 a x 3 + 3 b x + 4 c f(x)=x^5+2ax^3+3bx+4c f(x)=x5+2ax3+3bx+4c 是奇次,故方程 f ( x ) = 0 f(x)=0 f(x)=0 至少有一实根
又 f ′ ( x ) = 5 x 4 + 6 a x 2 + 3 b = 0 f^{'}(x)=5x^4+6ax^2+3b=0 f′(x)=5x4+6ax2+3b=0, δ = 12 ( 3 a 2 − 5 b ) < 0 \delta=12(3a^2-5b)<0 δ=12(3a2−5b)<0,所以 f ′ ( x ) ≠ 0 f^{'}(x)≠0 f′(x)=0, f ( x ) f(x) f(x) 至多有一实根
零点+罗尔原话
证:设
f
(
x
)
=
a
1
(
x
−
λ
2
)
(
x
−
λ
3
)
+
a
2
(
x
−
λ
1
)
(
x
−
λ
3
)
+
a
3
(
x
−
λ
1
)
(
x
−
λ
2
)
f(x)=a_1(x-\lambda_2)(x-\lambda_3)+a_2(x-\lambda_1)(x-\lambda_3)+a_3(x-\lambda_1)(x-\lambda_2)
f(x)=a1(x−λ2)(x−λ3)+a2(x−λ1)(x−λ3)+a3(x−λ1)(x−λ2)
{ f ( λ 1 ) = a 1 ( λ 1 − λ 2 ) ( λ 1 − λ 3 ) > 0 f ( λ 2 ) = a 2 ( λ 2 − λ 1 ) ( λ 2 − λ 3 ) < 0 f ( λ 3 ) = a 3 ( λ 3 − λ 1 ) ( λ 3 − λ 2 ) > 0 \begin{cases} f(\lambda_1)=a_1(\lambda_1-\lambda_2)(\lambda_1-\lambda_3)>0 \\ f(\lambda_2)=a_2(\lambda_2-\lambda_1)(\lambda_2-\lambda_3)<0 \\ f(\lambda_3)=a_3(\lambda_3-\lambda_1)(\lambda_3-\lambda_2)>0 \\ \end{cases} ⎩⎪⎨⎪⎧f(λ1)=a1(λ1−λ2)(λ1−λ3)>0f(λ2)=a2(λ2−λ1)(λ2−λ3)<0f(λ3)=a3(λ3−λ1)(λ3−λ2)>0
∃ ϵ 1 ∈ ( λ 1 , λ 2 ) , ϵ 2 ∈ ( λ 2 , λ 3 ) , f ( ϵ 1 ) = 0 , f ( ϵ 2 ) = 0 \exists \epsilon_1 \in (\lambda_1, \lambda_2), \epsilon_2 \in (\lambda_2, \lambda_3), f(\epsilon_1)=0, f(\epsilon_2)=0 ∃ϵ1∈(λ1,λ2),ϵ2∈(λ2,λ3),f(ϵ1)=0,f(ϵ2)=0,所以 f ( x ) f(x) f(x) 至少有 2 2 2 个零点
因 f ( x ) f(x) f(x) 最高次是二次,即 f ( 3 ) ( x ) = 0 f^{(3)}(x)=0 f(3)(x)=0,所以 f ( x ) f(x) f(x) 至多有 2 2 2 个零点
零点+罗尔原话
证:
f
(
x
)
−
f
(
0
)
=
f
′
(
ϵ
)
(
x
−
0
)
=
f
′
(
ϵ
)
x
≥
k
x
f(x)-f(0)=f^{'}(\epsilon)(x-0)=f^{'}(\epsilon)x≥kx
f(x)−f(0)=f′(ϵ)(x−0)=f′(ϵ)x≥kx,所以
f
(
x
)
≥
k
x
+
f
(
0
)
f(x)≥kx+f(0)
f(x)≥kx+f(0)
当 x → + ∞ x \to +\infin x→+∞ 时, f ( x ) → + ∞ f(x) \to +\infin f(x)→+∞, f ( 0 ) < 0 f(0)<0 f(0)<0,所以 f ( x ) f(x) f(x) 在 ( 0 , + ∞ ) (0, +\infin) (0,+∞) 至少有一个零点
又 f ′ ( x ) > 0 f^{'}(x)>0 f′(x)>0,所以 f ( x ) f(x) f(x) 在 ( 0 , + ∞ ) (0, +\infin) (0,+∞) 至多有一个零点
2. 广义零点介值
广义介值定理:当 x → − ∞ x \to -\infin x→−∞ 时, lim f ( x ) = A \lim f(x) = A limf(x)=A,当 x → + ∞ x \to +\infin x→+∞ 时, lim f ( x ) = B \lim f(x) = B limf(x)=B,且 A < C < B A<C<B A<C<B,则 ∃ ϵ ∈ ( − ∞ , + ∞ ) \exists \epsilon \in (-\infin,+\infin) ∃ϵ∈(−∞,+∞),使 f ( ϵ ) = C f(\epsilon)=C f(ϵ)=C
证:当
x
→
−
∞
x \to -\infin
x→−∞ 时,
lim
f
(
x
)
=
A
\lim f(x)=A
limf(x)=A,则
∃
x
1
\exists x_1
∃x1,使得
f
(
x
)
<
C
f(x)<C
f(x)<C
当 x → + ∞ x \to +\infin x→+∞ 时, lim f ( x ) = B \lim f(x)=B limf(x)=B,则 ∃ x 2 \exists x_2 ∃x2,使得 f ( x ) > C f(x)>C f(x)>C,在 x 1 x_1 x1 和 x 2 x_2 x2 之间存在一个 ϵ \epsilon ϵ,使得 f ( ϵ ) = C f(\epsilon)=C f(ϵ)=C
广义零点定理:当 x → − ∞ x \to -\infin x→−∞ 时, lim f ( x ) = − ∞ \lim f(x) = -\infin limf(x)=−∞,当 x → + ∞ x \to +\infin x→+∞ 时, lim f ( x ) = + ∞ \lim f(x) = +\infin limf(x)=+∞,存在 ϵ ∈ ( − ∞ , + ∞ ) \epsilon \in (-\infin,+\infin) ϵ∈(−∞,+∞),使得 f ( ϵ ) = 0 f(\epsilon)=0 f(ϵ)=0
证:设
F
(
x
)
=
f
(
x
)
+
x
,
x
∈
(
−
∞
,
+
∞
)
F(x)=f(x)+x, x \in (-\infin,+\infin)
F(x)=f(x)+x,x∈(−∞,+∞)
lim
x
→
∞
F
(
x
)
=
lim
x
→
∞
x
⋅
[
f
(
x
)
x
+
1
]
=
lim
x
→
∞
x
\lim_{x \to \infin} F(x) = \lim_{x \to \infin} x·[\frac{f(x)}{x} + 1] = \lim_{x \to \infin} x
x→∞limF(x)=x→∞limx⋅[xf(x)+1]=x→∞limx
lim
x
→
−
∞
F
(
x
)
=
−
∞
,
lim
x
→
+
∞
F
(
x
)
=
+
∞
\lim_{x \to -\infin} F(x) = -\infin, \lim_{x \to +\infin} F(x) = +\infin
x→−∞limF(x)=−∞,x→+∞limF(x)=+∞
因 F ( x ) F(x) F(x) 在 ( − ∞ , + ∞ ) (-\infin,+\infin) (−∞,+∞) 上连续,所以 ∃ x 1 , x 2 \exist x_1, x_2 ∃x1,x2,使得 F ( x 1 ) < 0 , F ( x 2 ) > 0 F(x_1)<0, F(x_2)>0 F(x1)<0,F(x2)>0
不妨设 x 1 < x 2 x_1<x_2 x1<x2,则 ∃ ϵ ∈ ( x 1 , x 2 ) \exists \epsilon \in (x_1, x_2) ∃ϵ∈(x1,x2),使得 F ( ϵ ) = 0 F(\epsilon)=0 F(ϵ)=0,命题得证
3. 导数零点介值
导数介值定理:当 f + ′ ( a ) < f − ′ ( b ) f^{'}_{+}(a)<f^{'}_{-}(b) f+′(a)<f−′(b) 时,且 f + ′ ( a ) < μ < f − ′ ( b ) f^{'}_{+}(a)<\mu <f^{'}_{-}(b) f+′(a)<μ<f−′(b) 时,则 ∃ ϵ ∈ ( a , b ) \exists \epsilon \in (a,b) ∃ϵ∈(a,b),使 f ′ ( ϵ ) = μ f^{'}(\epsilon)=\mu f′(ϵ)=μ
设 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上可导,证明 f + ′ ( a ) ⋅ f − ′ ( b ) < 0 f^{'}_{+}(a) · f^{'}_{-}(b)<0 f+′(a)⋅f−′(b)<0 时, ∃ ϵ ∈ ( a , b ) \exists \epsilon \in (a,b) ∃ϵ∈(a,b),使得 f ′ ( ϵ ) = 0 f^{'}(\epsilon)=0 f′(ϵ)=0
证:不妨设 f + ′ ( a ) > 0 f^{'}_{+}(a)>0 f+′(a)>0, f − ′ ( b ) < 0 f^{'}_{-}(b)<0 f−′(b)<0,从而 f + ′ ( a ) = lim x → a + f ( x ) − f ( a ) x − a > 0 → ∃ ϵ 1 > 0 , ∀ x ∈ ( a , a + ϵ 1 ) , f ( x ) > f ( a ) f − ′ ( b ) = lim x → b − f ( x ) − f ( b ) x − b < 0 → ∃ ϵ 2 > 0 , ∀ x ∈ ( b − ϵ 2 , b ) , f ( x ) > f ( b ) f^{'}_{+}(a)=\lim_{x \to a^{+}} \frac{f(x)-f(a)}{x-a} >0 \to \exists \epsilon_1 > 0,\forall x \in (a,a+\epsilon_1), f(x)>f(a) \\ f^{'}_{-}(b)=\lim_{x \to b^{-}} \frac{f(x)-f(b)}{x-b} <0 \to \exists \epsilon_2 > 0,\forall x \in (b-\epsilon_2,b), f(x)>f(b) f+′(a)=x→a+limx−af(x)−f(a)>0→∃ϵ1>0,∀x∈(a,a+ϵ1),f(x)>f(a)f−′(b)=x→b−limx−bf(x)−f(b)<0→∃ϵ2>0,∀x∈(b−ϵ2,b),f(x)>f(b) 故 f ( a ) f(a) f(a) 和 f ( b ) f(b) f(b) 均不是 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上的最大值,则 f ( x ) f(x) f(x) 在 ( a , b ) (a,b) (a,b) 内取到最大值,命题成立
导数零点定理:当 f + ′ ( a ) ⋅ f − ′ ( b ) < 0 f^{'}_{+}(a)·f^{'}_{-}(b)<0 f+′(a)⋅f−′(b)<0 时,存在 ϵ ∈ ( a , b ) \epsilon \in (a,b) ϵ∈(a,b),使得 f ′ ( ϵ ) = 0 f^{'}(\epsilon)=0 f′(ϵ)=0
设 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上可导,证明 f + ′ ( a ) ≠ f − ′ ( b ) f^{'}_{+}(a) ≠ f^{'}_{-}(b) f+′(a)=f−′(b) 时,任意 μ \mu μ 介于 f + ′ ( a ) f^{'}_{+}(a) f+′(a) 和 f − ′ ( b ) f^{'}_{-}(b) f−′(b), ϵ ∈ ( a , b ) \epsilon \in (a,b) ϵ∈(a,b),使得 f ′ ( ϵ ) = μ f^{'}(\epsilon)=\mu f′(ϵ)=μ
证:不妨设 f + ′ ( a ) < f − ′ ( b ) f^{'}_{+}(a) < f^{'}_{-}(b) f+′(a)<f−′(b), F ( x ) = f ( x ) − μ x F(x)=f(x)-\mu x F(x)=f(x)−μx,则 F + ′ ( a ) = f + ′ ( a ) − μ < 0 F_{+}^{'}(a)=f^{'}_{+}(a)-\mu<0 F+′(a)=f+′(a)−μ<0, F − ′ ( b ) = f − ′ ( b ) − μ > 0 F_{-}^{'}(b)=f^{'}_{-}(b)-\mu>0 F−′(b)=f−′(b)−μ>0, F + ′ ( a ) = lim x → a + F ( x ) − F ( a ) x − a < 0 → ∃ σ > 0 , x ∈ ( a , a + σ ) , F ( x ) < F ( a ) F − ′ ( b ) = lim x → b − F ( x ) − F ( b ) x − b > 0 → ∃ σ > 0 , x ∈ ( b − σ , b ) , F ( x ) < F ( b ) F_{+}^{'}(a)= \lim_{x \to a^{+} }\frac{F(x)-F(a)}{x-a}<0 \to \exists \sigma >0,x \in (a,a+\sigma), F(x)<F(a) \\ F_{-}^{'}(b)= \lim_{x \to b^{-} }\frac{F(x)-F(b)}{x-b}>0 \to \exists \sigma >0,x \in (b-\sigma,b), F(x)<F(b) F+′(a)=x→a+limx−aF(x)−F(a)<0→∃σ>0,x∈(a,a+σ),F(x)<F(a)F−′(b)=x→b−limx−bF(x)−F(b)>0→∃σ>0,x∈(b−σ,b),F(x)<F(b)
故 F ( a ) F(a) F(a) 和 F ( b ) F(b) F(b) 均不是 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上的最小值,则 F ( x ) F(x) F(x) 在 ( a , b ) (a,b) (a,b) 内取到最小值,命题成立
4. 零点介值推论
介值定理推论:当 x 1 , x 2 , . . . , x n ∈ [ a , b ] x_1, x_2, ..., x_n \in [a,b] x1,x2,...,xn∈[a,b], λ 1 + λ 2 + . . . + λ n = 1 \lambda_1+\lambda_2+...+\lambda_n=1 λ1+λ2+...+λn=1,则 ∃ ϵ ∈ [ a , b ] \exists \epsilon \in [a,b] ∃ϵ∈[a,b], f ( ϵ ) = λ 1 f ( x 1 ) + λ 2 f ( x 2 ) + . . . + λ n f ( x n ) f(\epsilon)=\lambda_1f(x_1)+\lambda_2f(x_2)+...+\lambda_nf(x_n) f(ϵ)=λ1f(x1)+λ2f(x2)+...+λnf(xn)
证:因
f
(
x
)
f(x)
f(x) 在
[
a
,
b
]
[a,b]
[a,b] 连续,所以
f
(
x
)
f(x)
f(x) 在
[
a
,
b
]
[a,b]
[a,b] 有最大值
M
M
M 和最小值
m
m
m,即
m
≤
f
(
x
)
≤
M
m≤f(x)≤M
m≤f(x)≤M
{
λ
1
m
≤
λ
1
f
(
x
1
)
≤
λ
1
M
λ
2
m
≤
λ
2
f
(
x
2
)
≤
λ
2
M
.
.
.
λ
n
m
≤
λ
2
f
(
x
n
)
≤
λ
n
M
\begin{cases} \lambda_1m≤\lambda_1f(x_1)≤\lambda_1M \\ \lambda_2m≤\lambda_2f(x_2)≤\lambda_2M \\ \qquad \qquad ... \\ \lambda_nm≤\lambda_2f(x_n)≤\lambda_nM \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧λ1m≤λ1f(x1)≤λ1Mλ2m≤λ2f(x2)≤λ2M...λnm≤λ2f(xn)≤λnM 上述
n
n
n 个式相加可得,
m
(
λ
1
+
λ
2
+
.
.
.
+
λ
n
)
≤
∑
k
=
1
n
λ
k
f
(
x
k
)
≤
M
(
λ
1
+
λ
2
+
.
.
.
+
λ
n
)
m(\lambda_1+\lambda_2+...+\lambda_n) ≤\sum_{k=1}^{n} \lambda_kf(x_k) ≤M(\lambda_1+\lambda_2+...+\lambda_n)
m(λ1+λ2+...+λn)≤∑k=1nλkf(xk)≤M(λ1+λ2+...+λn)
即 m ≤ ∑ k = 1 n λ k f ( x k ) ≤ M m≤\sum_{k=1}^{n} \lambda_kf(x_k)≤M m≤∑k=1nλkf(xk)≤M,可知原命题成立
证:设
F
(
x
)
=
f
(
x
)
−
f
(
x
+
1
2
)
,
x
∈
[
0
,
1
2
]
F(x)=f(x)-f(x+\frac{1}{2}), x \in [0,\frac{1}{2}]
F(x)=f(x)−f(x+21),x∈[0,21],
{
F
(
0
)
=
f
(
0
)
−
f
(
1
2
)
F
(
1
2
)
=
f
(
1
2
)
−
f
(
1
)
=
f
(
1
2
)
−
f
(
0
)
\begin{cases} F(0)=f(0)-f(\frac{1}{2}) \\ F(\frac{1}{2})=f(\frac{1}{2})-f(1)=f(\frac{1}{2})-f(0) \end{cases}
{F(0)=f(0)−f(21)F(21)=f(21)−f(1)=f(21)−f(0) 故
∃
ϵ
∈
[
0
,
1
2
]
\exist \epsilon \in [0,\frac{1}{2}]
∃ϵ∈[0,21],
F
(
ϵ
)
=
1
2
[
F
(
0
)
+
F
(
1
2
)
]
=
0
F(\epsilon) = \frac{1}{2}[F(0)+F(\frac{1}{2})]=0
F(ϵ)=21[F(0)+F(21)]=0,命题1成立
设
G
(
x
)
=
f
(
x
)
−
f
(
x
+
1
4
)
,
x
∈
[
0
,
3
4
]
G(x)=f(x)-f(x+\frac{1}{4}), x \in [0,\frac{3}{4}]
G(x)=f(x)−f(x+41),x∈[0,43],
{
G
(
0
)
=
f
(
0
)
−
f
(
1
4
)
G
(
1
4
)
=
f
(
1
4
)
−
f
(
2
4
)
G
(
2
4
)
=
f
(
2
4
)
−
f
(
3
4
)
G
(
3
4
)
=
f
(
3
4
)
−
f
(
1
)
\begin{cases} G(0)=f(0)-f(\frac{1}{4}) \\ G(\frac{1}{4})=f(\frac{1}{4})-f(\frac{2}{4}) \\ G(\frac{2}{4})=f(\frac{2}{4})-f(\frac{3}{4}) \\ G(\frac{3}{4})=f(\frac{3}{4})-f(1) \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧G(0)=f(0)−f(41)G(41)=f(41)−f(42)G(42)=f(42)−f(43)G(43)=f(43)−f(1) 故
∃
ϵ
∈
[
0
,
3
4
]
\exist \epsilon \in [0,\frac{3}{4}]
∃ϵ∈[0,43],
G
(
ϵ
)
=
1
4
[
G
(
0
)
+
G
(
1
4
)
+
G
(
2
4
)
+
G
(
3
4
)
]
=
0
G(\epsilon) = \frac{1}{4}[G(0)+G(\frac{1}{4})+G(\frac{2}{4})+G(\frac{3}{4})]=0
G(ϵ)=41[G(0)+G(41)+G(42)+G(43)]=0
而当 ϵ = 0 \epsilon = 0 ϵ=0 时, G ( 0 ) = G ( ϵ ) = 0 G(0)=G(\epsilon)=0 G(0)=G(ϵ)=0,则 G ( 1 4 ) + G ( 2 4 ) + G ( 3 4 ) = 0 G(\frac{1}{4})+G(\frac{2}{4})+G(\frac{3}{4})=0 G(41)+G(42)+G(43)=0
因 G ( x ) ≠ 0 G(x)≠0 G(x)=0,所以 G ( 1 4 ) 、 G ( 2 4 ) 、 G ( 3 4 ) 至 少 一 正 一 负 G(\frac{1}{4})、G(\frac{2}{4})、G(\frac{3}{4})至少一正一负 G(41)、G(42)、G(43)至少一正一负
不妨设 G ( 1 4 ) < 0 , G ( 2 4 ) > 0 G(\frac{1}{4})<0,G(\frac{2}{4})>0 G(41)<0,G(42)>0,则 ∃ ϵ ∈ [ 1 4 , 2 4 ] \exists \epsilon \in [\frac{1}{4}, \frac{2}{4}] ∃ϵ∈[41,42], G ( ϵ ) = 0 G(\epsilon)=0 G(ϵ)=0
不等式
1. 恒等变换及放缩
等式 或 单调性:恒等变换
等式:
单调性:判断数列
a
n
=
(
e
n
)
n
⋅
n
!
a_n=(\frac{e}{n})^n·n!
an=(ne)n⋅n! 的单调性
证:
a
n
+
1
−
a
n
a_{n+1}-a_n
an+1−an 不易证,因
a
n
>
0
a_n>0
an>0,即等价化为证
ln
a
n
+
1
−
ln
a
n
\ln a_{n+1}-\ln a_n
lnan+1−lnan
ln a n = n − n ln n + ∑ i = 1 n ln i , ln a n + 1 = n + 1 − ( n + 1 ) ln ( n + 1 ) + ∑ i = 1 n + 1 ln i \ln a_n=n-n\ln n+\sum_{i=1}^{n}\ln i,\ln a_{n+1}=n+1-(n+1)\ln (n+1)+\sum_{i=1}^{n+1}\ln i lnan=n−nlnn+∑i=1nlni,lnan+1=n+1−(n+1)ln(n+1)+∑i=1n+1lni
因 为 ln ( 1 + 1 / n ) ≤ 1 / n 因为\ln (1+1/n)≤1/n 因为ln(1+1/n)≤1/n,所以 ln a n + 1 − ln a n = 1 + n ln ( n n + 1 ) = 1 − ln ( 1 + 1 / n ) 1 / n ≥ 0 \ln a_{n+1}-\ln a_n=1+n\ln (\frac{n}{n+1})=1-\frac{\ln (1+1/n)}{1/n}≥0 lnan+1−lnan=1+nln(n+1n)=1−1/nln(1+1/n)≥0
因此 a n a_n an 单调递增
极限、级数
- 常用不等式: ∣ sin x ∣ ≤ ∣ x ∣ ≤ ∣ tan x ∣ , x ∈ ( − π 2 , π 2 ) x 1 + x ≤ ln ( 1 + x ) ≤ x , x ≥ 0 |\sin x|≤|x|≤|\tan x|, x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \qquad \frac{x}{1+x}≤\ln (1+x) ≤x, x ≥ 0 ∣sinx∣≤∣x∣≤∣tanx∣,x∈(−2π,2π)1+xx≤ln(1+x)≤x,x≥0
- 均值不等式: a 2 + b 2 ≥ 2 a b a^2+b^2≥2ab a2+b2≥2ab, a + b ≥ 2 a b , a = b 取 等 号 a+b≥2\sqrt{ab},a=b 取等号 a+b≥2ab,a=b取等号
- 绝对值不等式: − ∣ x ∣ ≤ x ≤ ∣ x ∣ -|x|≤x≤|x| −∣x∣≤x≤∣x∣, ∣ ∣ x ∣ − ∣ y ∣ ∣ ≤ ∣ x ± y ∣ ≤ ∣ x ∣ + ∣ y ∣ ||x|-|y||≤|x±y|≤|x|+|y| ∣∣x∣−∣y∣∣≤∣x±y∣≤∣x∣+∣y∣
- 取整不等式: x − 1 < [ x ] ≤ x x-1 < [x] ≤ x x−1<[x]≤x, [ x ] ≤ x ≤ [ x ] + 1 [x] ≤ x ≤ [x]+1 [x]≤x≤[x]+1
- 凹凸区不等式:凹 f ′ ′ ( x ) ≥ 0 f^{''}(x)≥0 f′′(x)≥0 凸 f ′ ′ ( x ) ≤ 0 f^{''}(x)≤0 f′′(x)≤0
常用不等式:证明 e x ≥ 1 + x , ∀ x ≥ 0 e^x≥1+x,\forall x≥0 ex≥1+x,∀x≥0
均值不等式:设
a
1
=
2
a_1=2
a1=2,
a
n
+
1
=
1
2
(
a
n
+
1
a
n
)
(
n
=
1
,
2...
)
a_{n+1}=\frac{1}{2}(a_n+\frac{1}{a_n})(n=1,2...)
an+1=21(an+an1)(n=1,2...),
(1) 证明
lim
a
n
\lim a_n
liman 存在
(2) 级数
∑
n
=
1
∞
(
a
n
a
n
+
1
−
1
)
\sum_{n=1}^{\infin} (\frac{a_n}{a_{n+1}}-1)
∑n=1∞(an+1an−1) 收敛
证明:令 ∑ n = 1 ∞ ( a n a n + 1 − 1 ) = ∑ n = 1 ∞ u n = u 1 + u 2 + . . . + u n + . . . \sum_{n=1}^{\infin} (\frac{a_n}{a_{n+1}}-1)=\sum_{n=1}^{\infin} u_n=u_1+u_2+...+u_n+... ∑n=1∞(an+1an−1)=∑n=1∞un=u1+u2+...+un+...
设 S n = ∑ i = 1 n u i , lim S n = ∑ n = 1 ∞ u n S_n=\sum_{i=1}^{n}u_i,\lim S_n=\sum_{n=1}^{\infin} u_n Sn=∑i=1nui,limSn=∑n=1∞un, 即证 S n 单 调 有 界 , 极 限 存 在 S_n 单调有界,极限存在 Sn单调有界,极限存在
S n − S n − 1 = u n = a n a n + 1 − 1 = a n − a n + 1 a n + 1 ≥ 0 , S n 单 调 递 减 S_{n}-S_{n-1}=u_n= \frac{a_n}{a_{n+1}}-1=\frac{a_{n} - a_{n+1}}{a_{n+1}}≥0,S_n 单调递减 Sn−Sn−1=un=an+1an−1=an+1an−an+1≥0,Sn单调递减
S n = u 1 + u 2 + . . . + u n = a 1 − a 2 a 2 + a 2 − a 3 a 3 + . . . + a n − a n + 1 a n + 1 ≥ a 1 − a 2 a 1 + a 2 − a 3 a 1 + . . . + a n − a n + 1 a 1 = 1 a 1 ( a 1 − a n + 1 ) , S n 有 下 界 S_n=u_1+u_2+...+u_n =\frac{a_1-a_2}{a_2}+\frac{a_2-a_3}{a_3}+...+\frac{a_n-a_{n+1}}{a_{n+1}} \\≥\frac{a_1-a_2}{a_1}+\frac{a_2-a_3}{a_1}+...+\frac{a_n-a_{n+1}}{a_1} =\frac{1}{a_1}(a_1-a_{n+1}),S_n 有下界 Sn=u1+u2+...+un=a2a1−a2+a3a2−a3+...+an+1an−an+1≥a1a1−a2+a1a2−a3+...+a1an−an+1=a11(a1−an+1),Sn有下界
2. 函数不等式
函数不等式:构造辅助函数 h ( x ) = f ( x ) − g ( x ) h(x)=f(x)-g(x) h(x)=f(x)−g(x),单调函数根据单调性,否则驻点易求 最值,驻点不易求 凹凸性。
单调性: 证明 当 x > 0 x > 0 x>0 时, ln ( 1 + 1 x ) < 1 x ( x + 1 ) \ln(1+\frac{1}{x})<\frac{1}{\sqrt{x(x+1)} } ln(1+x1)<x(x+1)1
证:令 t = 1 x t = \frac{1}{x} t=x1,则 t > 0 t >0 t>0, ln ( 1 + t ) < t 1 + t \ln (1+t) < \frac{t}{1+t} ln(1+t)<1+tt 等价于 t − 1 + t ln ( 1 + t ) > 0 t-\sqrt{1+t}\ln (1+t)>0 t−1+tln(1+t)>0
设 f ( t ) = t − 1 + t ln ( 1 + t ) f(t) = t-\sqrt{1+t}\ln (1+t) f(t)=t−1+tln(1+t),则 f ′ ( t ) = 2 1 + t − ln ( 1 + t ) − 2 2 1 + t f^{'}(t) = \frac{2\sqrt{1+t} - \ln(1+t) -2}{2\sqrt{1+t}} f′(t)=21+t21+t−ln(1+t)−2,无法判断正负
再设 g ( t ) = 2 1 + t − ln ( 1 + t ) − 2 g(t)=2\sqrt{1+t} - \ln(1+t) -2 g(t)=21+t−ln(1+t)−2,则 g ′ ( t ) = 1 + t − 1 1 + t > 0 g^{'}(t) = \frac{\sqrt{1+t} -1}{1+t}>0 g′(t)=1+t1+t−1>0,可知 g ( t ) > g ( 0 ) = 0 g(t)>g(0)=0 g(t)>g(0)=0,
因为 f ′ ( t ) = g ( t ) 2 1 + t > 0 f^{'}(t)=\frac{g(t)}{2\sqrt{1+t}}>0 f′(t)=21+tg(t)>0,所以 f ( t ) > f ( 0 ) = 0 f(t)>f(0)=0 f(t)>f(0)=0,结论得证
最值:证明 1 + x ln ( x + 1 + x 2 ) ≥ 1 + x 2 , − ∞ < x < ∞ 1+x\ln (x+\sqrt{1+x^2}) ≥ \sqrt{1+x^2}, -\infin < x < \infin 1+xln(x+1+x2)≥1+x2,−∞<x<∞
证:设 f ( x ) = 1 + x ln ( x + 1 + x 2 ) − 1 + x 2 f(x) = 1+x\ln (x+\sqrt{1+x^2}) - \sqrt{1+x^2} f(x)=1+xln(x+1+x2)−1+x2,则 f ′ ( x ) = ln ( x + 1 + x 2 ) f^{'}(x)=\ln (x+\sqrt{1+x^2}) f′(x)=ln(x+1+x2)
令 f ′ ( x ) = 0 f^{'}(x) = 0 f′(x)=0 得驻点为 x = 0 x=0 x=0, f ′ ′ ( x ) = 1 1 + x 2 > 0 f^{''}(x)=\frac{1}{1+x^2}>0 f′′(x)=1+x21>0,所以 x = 0 x=0 x=0 为唯一极小值点,即最小值点
f ( x ) f(x) f(x) 的最小值为 f ( 0 ) = 0 f(0)=0 f(0)=0,故 − ∞ < x < ∞ -\infin < x < \infin −∞<x<∞ 时, f ( x ) ≥ 0 f(x) ≥ 0 f(x)≥0,结论得证
凹凸性:证明 当 0 < x < π 2 0<x<\frac{\pi}{2} 0<x<2π 时, sin x > 2 x π \sin x > \frac{2x}{\pi} sinx>π2x
证:设 f ( x ) = sin x − 2 x π f(x) = \sin x - \frac{2x}{\pi} f(x)=sinx−π2x,则 f ′ ( x ) = cos x − 2 π f^{'}(x)=\cos x - \frac{2}{\pi} f′(x)=cosx−π2, f ′ ′ ( x ) = − sin x < 0 , x ∈ ( 0 , π 2 ) f^{''}(x)=-\sin x <0, x \in (0, \frac{\pi}{2}) f′′(x)=−sinx<0,x∈(0,2π)
可得曲线 f ( x ) = sin x − 2 x π f(x) = \sin x - \frac{2x}{\pi} f(x)=sinx−π2x 在 ( 0 , π 2 ) (0, \frac{\pi}{2}) (0,2π) 上凸,又 f ( 0 ) = f ( π 2 ) = 0 f(0)=f(\frac{\pi}{2})=0 f(0)=f(2π)=0,所以 f ( x ) > 0 f(x)>0 f(x)>0,结论得证
3. 数字不等式
数字不等式:式子含有 a , b a, b a,b 等常数,构造辅助函数 (左-右, b b b 或 b a \frac{b}{a} ab 换成 x x x) 或 拉格朗日中值
辅助函数: 设 0 < a < b 0 < a < b 0<a<b,证明 ln b a > 2 b − a a + b \ln \frac{b}{a} > 2 \frac{b-a}{a+b} lnab>2a+bb−a
证: ln b a > 2 b − a a + b \ln \frac{b}{a} > 2 \frac{b-a}{a+b} lnab>2a+bb−a 等价于 ln b a > 2 b a − 1 1 + b a \ln \frac{b}{a} > 2 \frac{\frac{b}{a}-1}{1+\frac{b}{a}} lnab>21+abab−1,令 x = b a x=\frac{b}{a} x=ab,则 x > 1 x>1 x>1, ln x > 2 x − 1 1 + x \ln x> 2 \frac{x-1}{1+x} lnx>21+xx−1
设 f ( x ) = ( 1 + x ) ln x − 2 ( x − 1 ) f(x)=(1+x)\ln x - 2(x-1) f(x)=(1+x)lnx−2(x−1),则 f ′ ( x ) = 1 x + ln x − 1 f^{'}(x) = \frac{1}{x} + \ln x - 1 f′(x)=x1+lnx−1, f ′ ′ ( x ) = 1 x ( 1 − 1 x ) > 0 f^{''}(x)=\frac{1}{x}(1-\frac{1}{x})>0 f′′(x)=x1(1−x1)>0
因此, f ′ ( x ) > f ′ ( 1 ) = 0 f^{'}(x)>f^{'}(1) = 0 f′(x)>f′(1)=0,故 f ( x ) > f ( 1 ) = 0 f(x)>f(1)=0 f(x)>f(1)=0,结论得证
拉格朗日: 设 0 < a < b 0 < a < b 0<a<b,证明 arctan b − arctan a < b − a 2 a b \arctan b - \arctan a < \frac{b-a}{2ab} arctanb−arctana<2abb−a
证:在
[
a
,
b
]
[a,b]
[a,b] 上使用拉格朗日中值定理,
arctan
b
−
arctan
a
b
−
a
=
1
1
+
ϵ
2
<
1
1
+
a
2
<
1
a
2
+
b
2
<
1
2
a
b
(
0
<
a
<
ϵ
<
b
<
1
)
\frac{\arctan b - \arctan a}{b-a} = \frac{1}{1+\epsilon^2} < \frac{1}{1+a^2} < \frac{1}{a^2+b^2}<\frac{1}{2ab}(0<a<\epsilon<b<1)
b−aarctanb−arctana=1+ϵ21<1+a21<a2+b21<2ab1(0<a<ϵ<b<1)
4.积分不等式
证明积分不等式:令 b → x b \to x b→x,左 – 右,函数单调性
单调性
设 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 连续且严格单调,证明: ( a + b ) ∫ a b f ( x ) d x ≤ 2 ∫ a b x f ( x ) d x (a+b)\int_{a}^{b}f(x)dx≤2\int_{a}^{b}xf(x)dx (a+b)∫abf(x)dx≤2∫abxf(x)dx
证:令 F ( x ) = 2 ∫ a x t f ( t ) d t − ( a + x ) ∫ a x f ( t ) d t , t ∈ [ a , b ] F(x)=2\int_{a}^{x}tf(t)dt - (a+x)\int_{a}^{x}f(t)dt, t \in [a,b] F(x)=2∫axtf(t)dt−(a+x)∫axf(t)dt,t∈[a,b],
则 F ′ ( x ) = 2 x f ( x ) − ( a + x ) f ( x ) − ∫ a x f ( t ) d t = ( x − a ) [ f ( x ) − f ( ϵ ) ] F^{'}(x)=2xf(x) - (a+x)f(x) - \int_{a}^{x} f(t)dt = (x-a)[f(x)-f(\epsilon)] F′(x)=2xf(x)−(a+x)f(x)−∫axf(t)dt=(x−a)[f(x)−f(ϵ)]
因 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 连续且严格单调,所以 f ( ϵ ) < f ( x ) f(\epsilon)<f(x) f(ϵ)<f(x), F ′ ( x ) > 0 F^{'}(x)>0 F′(x)>0
又 F ( a ) = 0 F(a)=0 F(a)=0,故 F ( x ) > 0 F(x)>0 F(x)>0, F ( b ) > 0 F(b)>0 F(b)>0
极值
设 f ( x ) f(x) f(x) 在 [ 0 , 1 ] [0,1] [0,1] 连续且单调减少,证明:当 0 < a < 1 0<a<1 0<a<1 时, ∫ 0 a f ( x ) d x ≥ a ∫ 0 1 f ( x ) d x \int_{0}^{a} f(x)dx ≥ a\int_{0}^{1} f(x)dx ∫0af(x)dx≥a∫01f(x)dx
证:令 F ( x ) = ∫ 0 x f ( t ) d t − x ∫ 0 1 f ( t ) d t F(x) = \int_{0}^{x} f(t) dt - x\int_{0}^{1}f(t)dt F(x)=∫0xf(t)dt−x∫01f(t)dt,可知 F ( 0 ) = 0 , F ( 1 ) = 0 F(0)=0, F(1)=0 F(0)=0,F(1)=0
则 F ′ ( x ) = f ( x ) − ∫ 0 1 f ( t ) d t = f ( x ) − f ( ϵ ) , ϵ ∈ ( 0 , 1 ) F^{'}(x) = f(x) - \int_{0}^{1}f(t)dt = f(x) - f(\epsilon), \epsilon \in (0,1) F′(x)=f(x)−∫01f(t)dt=f(x)−f(ϵ),ϵ∈(0,1)
x x x | [ 0 , ϵ ) [0,\epsilon) [0,ϵ) | ϵ \epsilon ϵ | ( ϵ , 1 ) (\epsilon, 1) (ϵ,1) |
---|---|---|---|
g ′ ( x ) g^{'}(x) g′(x) | + | 0 | - |
g ( x ) g(x) g(x) | ↗ | 极大 |
所以 F ( x ) ≥ 0 F(x)≥0 F(x)≥0, F ( a ) ≥ 0 F(a)≥0 F(a)≥0
变限积分
设 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 在 [ a , b ] [a,b] [a,b] 连续, ∫ a x f ( t ) d t ≥ ∫ a x g ( t ) d t , x ∈ [ a , b ] \int_{a}^{x} f(t)dt ≥ \int_{a}^{x}g(t)dt,x \in [a,b] ∫axf(t)dt≥∫axg(t)dt,x∈[a,b], ∫ a b f ( t ) d t = ∫ a b g ( t ) d t \int_{a}^{b} f(t)dt = \int_{a}^{b}g(t)dt ∫abf(t)dt=∫abg(t)dt,证明: ∫ a b x f ( x ) d x ≤ ∫ a b x g ( x ) d x \int_{a}^{b} xf(x)dx ≤ \int_{a}^{b} xg(x)dx ∫abxf(x)dx≤∫abxg(x)dx
证:
令 F ( x ) = ∫ a x f ( t ) d t , G ( x ) = ∫ a x g ( t ) d t F(x)=\int_{a}^{x} f(t)dt,G(x)=\int_{a}^{x}g(t)dt F(x)=∫axf(t)dt,G(x)=∫axg(t)dt,则 F ( a ) = G ( a ) , F ( b ) = G ( b ) , F ( x ) ≥ G ( x ) F(a)=G(a),F(b)=G(b),F(x)≥G(x) F(a)=G(a),F(b)=G(b),F(x)≥G(x)
因 f ( x ) = F ′ ( x ) f(x)=F^{'}(x) f(x)=F′(x) 和 g ( x ) = G ′ ( x ) g(x)=G^{'}(x) g(x)=G′(x),所以要证 ∫ a b x f ( x ) d x ≤ ∫ a b x g ( x ) d x \int_{a}^{b} xf(x)dx ≤ \int_{a}^{b} xg(x)dx ∫abxf(x)dx≤∫abxg(x)dx,证 ∫ a b x d F ( x ) ≤ ∫ a b x d G ( x ) \int_{a}^{b} xdF(x) ≤ \int_{a}^{b} xdG(x) ∫abxdF(x)≤∫abxdG(x)
x F ( x ) ∣ a b − ∫ a b F ( x ) d x ≤ x G ( x ) ∣ a b − ∫ a b G ( x ) d x , 即 ∫ a b F ( x ) d x ≤ ∫ a b G ( x ) d x xF(x)|_{a}^{b}-\int_{a}^{b}F(x)dx≤xG(x)|_{a}^{b}-\int_{a}^{b}G(x)dx,即 \int_{a}^{b} F(x)dx ≤ \int_{a}^{b} G(x) dx xF(x)∣ab−∫abF(x)dx≤xG(x)∣ab−∫abG(x)dx,即∫abF(x)dx≤∫abG(x)dx
又 F ( x ) ≥ G ( x ) F(x)≥G(x) F(x)≥G(x),故 ∫ a b F ( x ) d x ≥ ∫ a b G ( x ) d x \int_{a}^{b} F(x)dx ≥ \int_{a}^{b} G(x)dx ∫abF(x)dx≥∫abG(x)dx
积分中值反用
设 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 均在 [ a , b ] [a,b] [a,b] 连续且单调递增,证明: ∫ a b f ( x ) d x ∫ a b g ( x ) d x ≤ ( b − a ) ∫ a b f ( x ) g ( x ) d x \int_{a}^{b} f(x)dx \int_{a}^{b}g(x)dx ≤ (b-a)\int_{a}^{b}f(x)g(x)dx ∫abf(x)dx∫abg(x)dx≤(b−a)∫abf(x)g(x)dx
证:令 F ( x ) = ( x − a ) ∫ a x f ( t ) g ( t ) d t − ∫ a x f ( t ) d t ∫ a x g ( t ) d t F(x)=(x-a)\int_{a}^{x} f(t)g(t)dt-\int_{a}^{x}f(t)dt\int_{a}^{x}g(t)dt F(x)=(x−a)∫axf(t)g(t)dt−∫axf(t)dt∫axg(t)dt,则 F ( a ) = 0 F(a)=0 F(a)=0,证明 F ( b ) ≥ 0 F(b)≥0 F(b)≥0
F ′ ( x ) = ( x − a ) f ( x ) g ( x ) + ∫ a x f ( t ) g ( t ) d t − f ( x ) ∫ a x g ( t ) d t − g ( x ) ∫ a x f ( t ) d t F^{'}(x)=(x-a)f(x)g(x)+\int_{a}^{x}f(t)g(t)dt-f(x)\int_{a}^{x}g(t)dt-g(x)\int_{a}^{x}f(t)dt F′(x)=(x−a)f(x)g(x)+∫axf(t)g(t)dt−f(x)∫axg(t)dt−g(x)∫axf(t)dt
因 ( x − a ) = ∫ a x d t (x-a)=\int_{a}^{x}dt (x−a)=∫axdt,所以 ( x − a ) f ( x ) g ( x ) = ∫ a x f ( x ) g ( x ) d t (x-a)f(x)g(x)=\int_{a}^{x}f(x)g(x)dt (x−a)f(x)g(x)=∫axf(x)g(x)dt
F ′ ( x ) = ∫ a x f ( x ) g ( x ) + f ( t ) g ( t ) − f ( x ) g ( t ) + g ( x ) f ( t ) d t = ∫ a x [ f ( x ) − f ( t ) ] [ g ( x ) − g ( t ) ] d t F^{'}(x)=\int_{a}^{x}f(x)g(x)+f(t)g(t)-f(x)g(t)+g(x)f(t)dt=\int_{a}^{x}[f(x)-f(t)][g(x)-g(t)]dt F′(x)=∫axf(x)g(x)+f(t)g(t)−f(x)g(t)+g(x)f(t)dt=∫ax[f(x)−f(t)][g(x)−g(t)]dt
可得
F
′
(
x
)
≥
0
F^{'}(x)≥0
F′(x)≥0,所以
F
(
x
)
F(x)
F(x) 单调递增,又
F
(
a
)
=
0
F(a)=0
F(a)=0,故
F
(
b
)
≥
0
F(b)≥0
F(b)≥0