【证明题】(二)基本定理和不等式

本文详细介绍了数学中的基本定理,包括零点介值定理及其推论,以及不等式的证明方法,如恒等变换、单调性、函数不等式和积分不等式。通过各种定理和不等式的证明,揭示了数学证明的逻辑与技巧。
摘要由CSDN通过智能技术生成

基本定理

1. 零点介值

介值定理:当 m ≤ f ( x ) ≤ M m≤f(x)≤M mf(x)M,且 m ≤ μ ≤ M m≤\mu≤M mμM,则 ∃ ϵ ∈ [ a , b ] \exists \epsilon \in [a,b] ϵ[a,b],使 f ( ϵ ) = μ f(\epsilon)=\mu f(ϵ)=μ

在这里插入图片描述
:假设不 ∃ ϵ ∈ [ a , b ] \exists \epsilon \in [a,b] ϵ[a,b],使得 f ( ϵ ) = 0 f(\epsilon)=0 f(ϵ)=0,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 恒大于0或恒小于0

不妨设 f ( x ) > 0 , ∀ x ∈ [ a , b ] f(x)>0, \forall x \in [a,b] f(x)>0,x[a,b], 因 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,故 f ( x ) f(x) f(x) 有最小值 f ( x 2 ) = m f(x_2)=m f(x2)=m

∣ f ( y ) ∣ ≤ 1 2 ∣ f ( x ) ∣ |f(y)|≤\frac{1}{2}|f(x)| f(y)21f(x),所以 ∃ x 3 ∈ [ a , b ] , ∣ f ( x 3 ) ∣ ≤ 1 2 ∣ f ( x 2 ) ∣ \exists x_3 \in [a,b], |f(x_3)|≤\frac{1}{2}|f(x_2)| x3[a,b],f(x3)21f(x2),即 f ( x 3 ) ≤ 1 2 f ( x 2 ) = m f(x_3)≤\frac{1}{2}f(x_2)=m f(x3)21f(x2)=m,矛盾故原命题成立

零点定理:当 f ( a ) ⋅ f ( b ) < 0 f(a)·f(b)<0 f(a)f(b)<0 时,存在 ϵ ∈ ( a , b ) \epsilon \in (a,b) ϵ(a,b),使得 f ( ϵ ) = 0 f(\epsilon)=0 f(ϵ)=0
存在性:奇次多项式至少 1 1 1 个、零点定理 f ( ϵ ) = 0 f(\epsilon)=0 f(ϵ)=0
唯一性:单调性、罗尔原话 f ( m ) ( x ) ≠ 0 f^{(m)}(x)≠0 f(m)(x)=0,则 f ( x ) = 0 f(x)=0 f(x)=0 至多 m m m 个实根

奇次+罗尔原话

3 a 2 − 5 b < 0 3a^2-5b<0 3a25b<0,求方程 x 5 + 2 a x 3 + 3 b x + 4 c = 0 x^5+2ax^3+3bx+4c=0 x5+2ax3+3bx+4c=0 的实根个数。

:因为 f ( x ) = x 5 + 2 a x 3 + 3 b x + 4 c f(x)=x^5+2ax^3+3bx+4c f(x)=x5+2ax3+3bx+4c 是奇次,故方程 f ( x ) = 0 f(x)=0 f(x)=0 至少有一实根

f ′ ( x ) = 5 x 4 + 6 a x 2 + 3 b = 0 f^{'}(x)=5x^4+6ax^2+3b=0 f(x)=5x4+6ax2+3b=0 δ = 12 ( 3 a 2 − 5 b ) < 0 \delta=12(3a^2-5b)<0 δ=12(3a25b)<0,所以 f ′ ( x ) ≠ 0 f^{'}(x)≠0 f(x)=0 f ( x ) f(x) f(x) 至多有一实根

零点+罗尔原话
在这里插入图片描述
:设 f ( x ) = a 1 ( x − λ 2 ) ( x − λ 3 ) + a 2 ( x − λ 1 ) ( x − λ 3 ) + a 3 ( x − λ 1 ) ( x − λ 2 ) f(x)=a_1(x-\lambda_2)(x-\lambda_3)+a_2(x-\lambda_1)(x-\lambda_3)+a_3(x-\lambda_1)(x-\lambda_2) f(x)=a1(xλ2)(xλ3)+a2(xλ1)(xλ3)+a3(xλ1)(xλ2)

{ f ( λ 1 ) = a 1 ( λ 1 − λ 2 ) ( λ 1 − λ 3 ) > 0 f ( λ 2 ) = a 2 ( λ 2 − λ 1 ) ( λ 2 − λ 3 ) < 0 f ( λ 3 ) = a 3 ( λ 3 − λ 1 ) ( λ 3 − λ 2 ) > 0 \begin{cases} f(\lambda_1)=a_1(\lambda_1-\lambda_2)(\lambda_1-\lambda_3)>0 \\ f(\lambda_2)=a_2(\lambda_2-\lambda_1)(\lambda_2-\lambda_3)<0 \\ f(\lambda_3)=a_3(\lambda_3-\lambda_1)(\lambda_3-\lambda_2)>0 \\ \end{cases} f(λ1)=a1(λ1λ2)(λ1λ3)>0f(λ2)=a2(λ2λ1)(λ2λ3)<0f(λ3)=a3(λ3λ1)(λ3λ2)>0

∃ ϵ 1 ∈ ( λ 1 , λ 2 ) , ϵ 2 ∈ ( λ 2 , λ 3 ) , f ( ϵ 1 ) = 0 , f ( ϵ 2 ) = 0 \exists \epsilon_1 \in (\lambda_1, \lambda_2), \epsilon_2 \in (\lambda_2, \lambda_3), f(\epsilon_1)=0, f(\epsilon_2)=0 ϵ1(λ1,λ2),ϵ2(λ2,λ3)f(ϵ1)=0,f(ϵ2)=0,所以 f ( x ) f(x) f(x) 至少有 2 2 2 个零点

f ( x ) f(x) f(x) 最高次是二次,即 f ( 3 ) ( x ) = 0 f^{(3)}(x)=0 f(3)(x)=0,所以 f ( x ) f(x) f(x) 至多有 2 2 2 个零点

零点+罗尔原话
在这里插入图片描述
f ( x ) − f ( 0 ) = f ′ ( ϵ ) ( x − 0 ) = f ′ ( ϵ ) x ≥ k x f(x)-f(0)=f^{'}(\epsilon)(x-0)=f^{'}(\epsilon)x≥kx f(x)f(0)=f(ϵ)(x0)=f(ϵ)xkx,所以 f ( x ) ≥ k x + f ( 0 ) f(x)≥kx+f(0) f(x)kx+f(0)

x → + ∞ x \to +\infin x+ 时, f ( x ) → + ∞ f(x) \to +\infin f(x)+ f ( 0 ) < 0 f(0)<0 f(0)<0,所以 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0, +\infin) (0,+) 至少有一个零点

f ′ ( x ) > 0 f^{'}(x)>0 f(x)>0,所以 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0, +\infin) (0,+) 至多有一个零点

2. 广义零点介值

广义介值定理:当 x → − ∞ x \to -\infin x 时, lim ⁡ f ( x ) = A \lim f(x) = A limf(x)=A,当 x → + ∞ x \to +\infin x+ 时, lim ⁡ f ( x ) = B \lim f(x) = B limf(x)=B,且 A < C < B A<C<B A<C<B,则 ∃ ϵ ∈ ( − ∞ , + ∞ ) \exists \epsilon \in (-\infin,+\infin) ϵ(,+),使 f ( ϵ ) = C f(\epsilon)=C f(ϵ)=C

在这里插入图片描述
:当 x → − ∞ x \to -\infin x 时, lim ⁡ f ( x ) = A \lim f(x)=A limf(x)=A,则 ∃ x 1 \exists x_1 x1,使得 f ( x ) < C f(x)<C f(x)<C

x → + ∞ x \to +\infin x+ 时, lim ⁡ f ( x ) = B \lim f(x)=B limf(x)=B,则 ∃ x 2 \exists x_2 x2,使得 f ( x ) > C f(x)>C f(x)>C,在 x 1 x_1 x1 x 2 x_2 x2 之间存在一个 ϵ \epsilon ϵ,使得 f ( ϵ ) = C f(\epsilon)=C f(ϵ)=C

广义零点定理:当 x → − ∞ x \to -\infin x 时, lim ⁡ f ( x ) = − ∞ \lim f(x) = -\infin limf(x)=,当 x → + ∞ x \to +\infin x+ 时, lim ⁡ f ( x ) = + ∞ \lim f(x) = +\infin limf(x)=+,存在 ϵ ∈ ( − ∞ , + ∞ ) \epsilon \in (-\infin,+\infin) ϵ(,+),使得 f ( ϵ ) = 0 f(\epsilon)=0 f(ϵ)=0

在这里插入图片描述
:设 F ( x ) = f ( x ) + x , x ∈ ( − ∞ , + ∞ ) F(x)=f(x)+x, x \in (-\infin,+\infin) F(x)=f(x)+x,x(,+)
lim ⁡ x → ∞ F ( x ) = lim ⁡ x → ∞ x ⋅ [ f ( x ) x + 1 ] = lim ⁡ x → ∞ x \lim_{x \to \infin} F(x) = \lim_{x \to \infin} x·[\frac{f(x)}{x} + 1] = \lim_{x \to \infin} x xlimF(x)=xlimx[xf(x)+1]=xlimx lim ⁡ x → − ∞ F ( x ) = − ∞ , lim ⁡ x → + ∞ F ( x ) = + ∞ \lim_{x \to -\infin} F(x) = -\infin, \lim_{x \to +\infin} F(x) = +\infin xlimF(x)=,x+limF(x)=+

F ( x ) F(x) F(x) ( − ∞ , + ∞ ) (-\infin,+\infin) (,+) 上连续,所以 ∃ x 1 , x 2 \exist x_1, x_2 x1,x2,使得 F ( x 1 ) < 0 , F ( x 2 ) > 0 F(x_1)<0, F(x_2)>0 F(x1)<0,F(x2)>0

不妨设 x 1 < x 2 x_1<x_2 x1<x2,则 ∃ ϵ ∈ ( x 1 , x 2 ) \exists \epsilon \in (x_1, x_2) ϵ(x1,x2),使得 F ( ϵ ) = 0 F(\epsilon)=0 F(ϵ)=0,命题得证

3. 导数零点介值

导数介值定理:当 f + ′ ( a ) < f − ′ ( b ) f^{'}_{+}(a)<f^{'}_{-}(b) f+(a)<f(b) 时,且 f + ′ ( a ) < μ < f − ′ ( b ) f^{'}_{+}(a)<\mu <f^{'}_{-}(b) f+

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值