机器学习算法总结之Boosting:Boosting Tree、GBDT

写在前面

上一篇 机器学习算法总结之Boosting family:AdaBoost 提到Boost但是没说它的整个框架及分类,在这里记一下。

  • Boosting(提升方法) = 加法模型 + 前向分步算法 + 损失函数
  • AdaBoost = Boosting + 损失函数是指数函数(基函数任意)
  • Boosting Tree(提升树) = Boosting + 基函数是决策树(损失函数任意)

所以从上面的结构可以看出Boosting是一个大的概述性的框架/算法,而AdaBoost 和Boosting Tree是其中的子集/特例。

常用的损失函数主要包括:

1)指数损失函数:决定了Adaboost必须进行加权取样(权重由错误率决定),以进行下一个模型的参数学习,并且决定了最终模型也是加权累计

2)平方误差损失函数:决定了BRT的下一个模型应该学习前一个模型的残差

3)一般损失函数:决定了GBRT/GBDT的下一个模型应该学习前一个模型的梯度(残差近似)

 

1.提升树(Boosting Tree)简介

提升树是以分类树或者回归树为基本分类器的提升方法。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。

提升树模型可以表示为决策树的加法模型:

f_{M}(x)=\sum_{m=1}^{M} T\left(x ; \Theta_{m}\right)

其中T(x;theta)表示决策树;theta为决策树的参数,M为树的个数

 

提升树算法采用的也是前向分步算法(具体可以参考之前的一篇:机器学习算法总结之Boosting:AdaBoost),首先确定初始提升树f0(x)=0,第m步的模型为:

\LARGE f_{m}(x)=f_{m-1}(x)+T\left(x ; \Theta_{m}\right)

通过经验风险极小化确定下一棵树的参数

\LARGE \hat{\Theta}_{m}=\arg \min _{\Theta_{m}} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+T\left(x_{i} ; \Theta_{m}\right)\right)

2.提升树算法

根据前述Boosting框架中三个条件的不同,可以将提升树细分为几种情况:

(1)BDT(提升决策树,二分类):二叉分类树 + 指数函数 → 加权

         可以发现其实就是讲AdaBoost中的基本分类器限定为二分类模型,可以说是AdaBoost的特例。

        下面就不再赘述了

(2)BRT(提升回归树):二叉回归树 + 平方误差函数 → 残差

(3)GBDT(梯度提升决策树):二叉回归树(或分类树) +普通损失函数 → 损失函数的负梯度

        当损失函数式平方误差函数时,就等于BRT

2.1  BRT算法推导

已知一个训练数据集T={(x1,y1),(x2,y2),…,(xN,yN)},X为输入空间,Y为输出空间。如果将输入空间X划分为J个不相交的区域R1,R2…,RJ,并且在每个区域上确定输出的常量cj,那么树可以表示为:

\LARGE T(x ; \Theta)=\sum_{j=1}^{J} c_{j} I\left(x \in R_{j}\right)

其中,参数:\Theta=\left\{\left(R_{1}, c_{1}\right),\left(R_{2}, c_{2}\right), \cdots,\left(R_{J}, c_{J}\right)\right\}表示树的区域划分和各个区域上的常数,J是回归树的复杂度即叶结点个数。BRT采用的前向回归算法已在第一部分给出,当采用平方误差作为损失函数时:

\LARGE L(y, f(x))=(y-f(x))^{2}

\LARGE \begin{aligned} L(y,& f_{m-1}(x)+T\left(x ; \Theta_{m}\right) ) \\ &=\left[y-f_{m-1}(x)-T\left(x ; \Theta_{m}\right)\right]^{2} \\&=\left t[r-T\left(x ; \Theta_{m}\right)\right]^{2} \end{aligned}

其中:r=y-f(x)为模型拟合数据的残差。

给出提升回归树算法的具体步骤:

2.2 举个栗子(统计学习方法P149)

 

3.  梯度提升树(GBDT)

GBDT也是Boosting家族的一个重要成员,GBDT有很多简称,有GBT(Gradient Boosting Tree) GTB(Gradient Tree Boosting ) GBRT(Gradient Boosting Regression Tree) MART(Multiple Additive Regression Tree) 其实都是一种算法。 

GBDT的弱学习器限定了只能使用CART回归树模型,在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是ft−1(x), 损失函数是L(y,ft−1(x)), 我们本轮迭代的目标是找到一个CART回归树模型的弱学习器ht(x),让本轮的损失损失L(y,ft(x))=L(y,ft−1(x)+ht(x))最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。从上面的描述可以看出,GBDT也是使用的前向分布算法和加法模型。

当损失函数时确定的平方损失或者指数损失时,每一步优化是很简单的。但是在多种多样的损失函数条件下,怎么找到这个合适的拟合量?

3.1 GBDT的负梯度拟合

针对一个一般损失函数,Freidman提出了梯度提升的算法,利用损失函数的负梯度在当前模型的值

\LARGE -\left[\frac{\partial L\left(y, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)}\right]_{f(x)=f_{m, 1}(x)}

来拟合本轮损失的近似值,进而拟合一个回归树。

3.2 GBDT回归算法

我们知道了怎么去找到这个拟合值,接下来就可以生成GBDT模型了。

输入:训练集样本T=\left\{\left(x, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{m}, y_{m}\right)\right\}, 最大迭代次数T, 损失函数L。

输出:强学习器f(x)

(1)初始化弱学习器:(是只有一个根节点的树)

                                 \LARGE f_{0}(x)=\arg \min _{\boldsymbol{c}} \sum_{i=1}^{N} L\left(y_{i}, c\right)

(2)对迭代次数t= 1~T:

        (a)对样本i = 1~m,计算负梯度:(也就是常说的“残差”,但是这里度梯度计算的是残差的近似值)

                                \LARGE r_{t i}=-\left[\frac{\partial L\left(y_{i}, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)}\right]_{f(x)=f_{t-1}(x)}

 

   (b)利用\large \left(x_{i}, r_{t i}\right)拟合一个回归树,得到第t颗树的叶结点区域\large R_{t j}(j=1,2,...,J,其中J为叶结点个数)

        (c)对j=1,2,...,J,计算最佳拟合值:(线性搜索估计叶节点区域的值,使得损失函数极小化)

                                  \LARGE c_{m j}=\arg \min _{c} \sum_{x_{i} \in R_{w}} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+c\right)

       (d)更新学习器:

                                  \LARGE f_{m}(x)=f_{m-1}(x)+\sum_{i=1}^{J} c_{m j} I\left(x \in R_{m j}\right)

(3)得到强学习器表达式:

                                \LARGE \hat{f}(x)=f_{M}(x)=\sum_{m=1}^{M} \sum_{j=1}^{J} c_{m j} I\left(x \in R_{m j}\right)

 

3.3  GBDT分类算法

首先明确一点,GBDT无论用于分类还是回归问题一直都是使用CART回归树。GBDT的分类算法从思想上和GBDT的回归算法没有区别,但是由于样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。为了解决这一问题,可以用类似于逻辑回归的对数似然函数,也就是用的是类别的预测概率值和真实概率值的差来拟合。

3.3.1 GBDT二元分类算法

对于二元分类GBDT问题,

  • 可以选择损失函数为:

                                          \large L(y, f(x))=\log (1+\exp (-y f(x)))

  • 则此时的负梯度误差为:

                                          \large r_{t i}=-\left[\frac{\partial L\left(y, f\left(x_{i}\right)\right) )}{\partial f\left(x_{i}\right)}\right]_{f(x)=f_{t-1}(x)}=y_{i} /\left(1+\exp \left(y_{i} f\left(x_{i}\right)\right)\right)

  • 各个叶节点的最佳残差拟合值为:

                                         ​​​​​​​\large c_{t j}=\underbrace{\arg \min }_{c} \sum_{x_{i} \in R_{t j}} \log \left(1+\exp \left(-y_{i}\left(f_{t-1}\left(x_{i}\right)+c\right)\right)\right)

  • 由于上式比较难优化,一般选择使用近似值替代:

                                         ​​​​​​​\large c_{t j}=\sum_{x_{i} \in R_{t j}} r_{t i} / \sum_{x_{i} \in R_{t j}}\left|r_{t i}\right|\left(1-\left|r_{t i}\right|\right)

3.3.2  GBDT多元分类算法

对于多元分类问题

  • 假设有K类,则此时对数似然函数为:

                                        \large L(y, f(x))=-\sum_{k=1}^{K} y_{k} \log p_{k}(x)​​​​​​​

  • 其中如果样本输出类别为k, 则yk = 1。第k类的概率为:

                                       \large p_{k}(x)=\exp \left(f_{k}(x)\right) / \sum_{l=1}^{K} \exp \left(f_{l}(x)\right)

 

  • 结合上述两式,可以算出第t轮的第i个样本对应类别 l 的负梯度误差为

                                      \large r_{t i l}=-\left[\frac{\partial L\left(y_{i}, f\left(x_{i}\right)\right) )}{\partial f\left(x_{i}\right)}\right]_{f_{k}(x)=f_{l, t-1}(x)}=y_{i l}-p_{l, t-1}\left(x_{i}\right)

 

  观察可以发现,其实这里的误差啊就是样本i对应类别l 的真实概率和(t-1)轮预测概率的差值。

  • 叶节点的最佳残差拟合值为

                                      \large c_{t j l}=\underbrace{\arg \min }_{c_{j l}} \sum_{i=0}^{m} \sum_{k=1}^{K} L\left(y_{k}, f_{t-1, l}(x)+\sum_{j=0}^{J} c_{j l} I\left(x_{i} \in R_{t j}\right)\right)

 

  • 由于上式比较难优化,一般选择使用近似值代替:

                                      ​​​​​​​\large c_{t j l}=\frac{K-1}{K} \frac{\sum_{x_{i} \in R_{t j}} r_{t i l}}{\sum_{x_{i} \in R_{i l}}\left|r_{t i l}\right|\left(1-\left|r_{t i l}\right|\right)}

关于GBDT多分类问题的实践可以参考:机器学习算法GBDT的面试要点总结-上篇


3.4 GBDT常用损失函数

差不多前面重要的算法也都讲完了,接下来稍微总结一下。

对于分类算法,其损失函数一般有对数损失函数和指数损失函数两种

对于回归算法,其损失函数一般有均方差、绝对损失、Huber损失、分位数损失四种。

ps.(1)Huber损失(Huber Loss wiki),它是均方差和绝对损失的折中,即对于远离中心的异常点,采用绝对损失,而中心附近的点采用均方差。这个界限一般用分位数点度量。

pps.(2)分位数损失:

                                          \large L(y, f(x))=\sum_{y \geq f(x)} \theta|y-f(x)|+\sum_{y<f(x)}(1-\theta)|y-f(x)|

其中theta为分位数,需要我们在回归前指定。对应的负梯度误差为:

                                         \large r\left(y_{i}, f\left(x_{i}\right)\right)=\left\{\begin{array}{ll}{\theta} & {y_{i} \geq f\left(x_{i}\right)} \\ {\theta-1} & {y_{i}<f\left(x_{i}\right)}\end{array}\right.

ppps. 对于Huber损失和分位数损失,只要用于健壮回归,也就是减少异常点对损失函数的影响。

3.5 GBDT正则化

和所有机器学习算法一样,GBDT也免不了会出现过拟合风险,需要正则化来减弱,主要有三种形式:

  • 第一种是和Adaboost类似的正则化项,即步长(learning rate)。定义为ν,对于前面的弱学习器的迭代

                                        \large f_{k}(x)=f_{k-1}(x)+h_{k}(x)

       如果我们加上了正则化项,则有

                                      \large f_{k}(x)=f_{k-1}(x)+\nu h_{k}(x)

    ν的取值范围为0<ν≤1。对于同样的训练集学习效果,较小的ν意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。

  • 第二种正则化的方式是通过子采样比例(subsample)。取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间。使用了子采样的GBDT有时也称作随机梯度提升树(Stochastic Gradient Boosting Tree, SGBT)。由于使用了子采样,程序可以通过采样分发到不同的任务去做boosting的迭代过程,最后形成新树,从而减少弱学习器难以并行学习的弱点。
  • 第三种是对于弱学习器即CART回归树进行正则化剪枝。与之前一篇决策树内容讲过的相同。(机器学习中树模型算法总结之 决策树(下)

 

小结

GBDT主要的优点有:

1) 可以灵活处理各种类型的数据,包括连续值和离散值。

2) 在相对少的调参时间情况下,预测的准备率也可以比较高。这个是相对SVM来说的。

3)使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

GBDT的主要缺点有:

1)由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。

由于GBDT算法的卓越性,使其成为机器学习研究必须掌握的算法之一,很多面试的问题也都会涉及这个方面,包括其原理、实现以及参数调优等。目前GBDT的算法比较好的库是xgboost,sklearn。

 

reference

统计学习方法

梯度提升树(GBDT)原理小结

以上~

2018.04.18

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值