目录
"groupId": "0",通常是用于对特定的一组关系或实体进行分组的标识符。
"attributeCount": 0,表示特定实体或关系所具有的属性数量。
"classType",例如: ConceptRelation, AtomClusterRelation, AtomRelation
"additionalRelationLabel",例如: "inverse_isa",( relation attribute ),对关系的补充说明标签,这里是54中语义关系展示的语义树
1.综合介绍
NLM于1986年开始了UMLS(Unified Medical Language Systems:一体化医学语言系统)的研究与应用,其目的是实现跨语言和跨数据库的情报检索。UMLS由四部分组成:超级叙词表、语义网络、情报源图谱和专家词典。超级叙词表是UMLS的核心部分,它收录了生物医学领域60多种词表和分类表中的语词,对于这些来源各异的语词,超级叙词表保留了它们在原来叙词表中的意义、关系等,并以概念为中心对超级叙词表进行组织。
对于同一概念的不同术语以及不同的变异形式,超级叙词表采用三级结构模式,即概念(Ⅰ级)?术语(Ⅱ级)?词串?(Ⅲ级),将一个概念的多种不同术语连同多个变异词串有序地组织在一起。
【对应: "classType",例如: ConceptRelation, AtomClusterRelation, AtomRelation】
并且,超级叙词表中还定义了11种概念间的关系来识别不同概念之间的联系。如广域关系(RB)、狭域关系(RN)、其他关系(RO)、相似关系(RL)、来源中的同义关系(SY)、非特异性的来源相关关系(RQ)、上位关系(PAR)、下位关系(CHD)、同位关系(SIB)、允许限制关系(AQ)和受限关系(QB)。
UMLS的语义是由语义类型和语义关系两部分组成。2003AA版的语义网络设置了135种语义类型,为超级叙词表中的每一个概念分配最为专指的语义类型,并设置了54种语义关系来表达这135种语义类型之间的关系。这些语义关系除了最基本的等级关系【is_a】外,还有空间关系、物理相关关系、功能相关关系、时间相关关系和概念相关关系共六大类。
UMLS已被广泛应用于信息系统的智能化检索、自然语言系统研究、专业词表的编制、自动标引、医学专业搜索引擎的开发、医学图像的描述及获取、课程分析等方面。但是,对语义的应用开发还不充分,UMLS语义将需要进一步开发和利用。
2.使用案例
当我们通过api查询关系后,常见的几个访问字段如下,搞清楚这些字段的意义对后续使用十分重要,给出一个案例如下:
GET | /content/{version}/CUI/{CUI}/relations | Retrieves NLM-asserted relationships for a known CUI |
{
"result": [
{
"ui": "R162928707",
"groupId": "0",
"attributeCount": 0,
"classType": "AtomClusterRelation",
"relatedFromIdName": "Closed fracture of carpal bone",
"relationLabel": "PAR",
"additionalRelationLabel": "inverse_isa",
"relatedIdName": "Closed fracture of left wrist"
},
{
"ui": "R162926601",
"groupId": "0",
"attributeCount": 0,
"classType": "AtomClusterRelation",
"relatedFromIdName": "Closed fracture of carpal bone",
"relationLabel": "PAR",
"additionalRelationLabel": "inverse_isa",
"relatedIdName": "Closed fracture of right wrist"
},
{
"ui": "R143885131",
"groupId": "NONE",
"attributeCount": 6,
"classType": "AtomClusterRelation",
"relatedFromIdName": "Closed fractures of carpal bones",
"relationLabel": "RO",
"additionalRelationLabel": "member_of",
"relatedIdName": "Osteoporosis/osteopenia (SMQ)"(骨质疏松症/骨质减少(SMQ))
},
{
"ui": "R143946612",
"groupId": "NONE",
"attributeCount": 6,
"classType": "AtomClusterRelation",
"relatedFromIdName": "Fracturas cerradas de huesos del carpo",(闭合性腕骨骨折)
"relationLabel": "RO",
"additionalRelationLabel": "member_of",
"relatedIdName": "Osteoporosis/osteopenia (SMQ)"
} ...
]
}
"ui": "R162928707",关系id
"groupId": "0",通常是用于对特定的一组关系或实体进行分组的标识符。
作用可能是为了方便管理和组织大量的关系数据。通过分组,可以将具有某些共同特征或属于同一主题领域的关系归为一类。例如,可能将所有与特定疾病类别相关的关系分配到一个特定的 “groupId” 中,以便在检索和分析时能够快速定位和处理特定组别的数据。
"attributeCount": 0,表示特定实体或关系所具有的属性数量。
属性可以是对实体或关系的进一步描述或限定信息。例如,对于一个医学概念,属性可能包括该概念的定义、同义词、所属分类等。如果 “attributeCount” 为 0,则表示该特定的关系或实体目前没有附加的属性定义。如果有具体的数值,就说明有相应数量的属性可以进一步提供关于该关系或实体的详细信息。
"classType",例如: ConceptRelation, AtomClusterRelation, AtomRelation
在统一医学语言系统(UMLS)中,通过概念唯一标识符(CUI)检索关系时,选择不同的 “classType” 有以下区别:
一、ConceptRelation(概念关系)
- 范围:涉及更广泛的医学概念之间的关系。它涵盖了不同层次和领域的医学概念,从疾病、症状、诊断方法到治疗手段等各种概念类型之间的关联。
- 粒度:通常具有较粗的粒度,关注的是宏观层面上概念之间的逻辑联系。例如,一种特定疾病与一类治疗药物之间的关系可能被归类为 ConceptRelation。
- 用途:适合用于进行大规模的医学知识图谱构建、医学信息检索的高级筛选等。当你希望了解不同医学领域的主要概念之间的关系时,这个类型很有帮助。
二、AtomClusterRelation(原子簇关系)
- 范围:聚焦于由多个相关原子(最基本的医学术语单元)组成的原子簇之间的关系。原子簇可以是围绕特定主题或疾病领域的一组相关术语集合。
- 粒度:相对较细,因为它涉及到具体的术语集合之间的关系。例如,关于心血管疾病的一组原子簇与关于呼吸系统疾病的一组原子簇之间的关系。
- 用途:对于深入研究特定医学领域内的术语关联、进行专题性的医学信息分析和挖掘非常有用。可以帮助研究者更好地理解特定领域内术语的组织结构和相互关系。
三、AtomRelation(原子关系)
- 范围:最为具体,仅限于单个医学术语单元(原子)之间的关系。这些原子通常是最基本的医学词汇或术语。
- 粒度:最细粒度的关系类型。例如,两个非常具体的医学术语,如 “高血压” 和 “血压升高” 之间的细微语义关系可能被归类为 AtomRelation。
- 用途:在进行精确的医学术语分析、语义理解和自然语言处理任务中非常关键。可以帮助提高医学文本处理的准确性和精细度,例如在医学文献自动标注、医学信息抽取等任务中。
"relatedFromIdName": "Closed fracture of carpal bone",这是关系的起始端概念名称,即 “腕骨闭合性骨折”。
"relationLabel",例如:"PAR"
超级叙词表中还定义了11种概念间的关系来识别不同概念之间的联系。如广域关系(RB)、狭域关系(RN)、其他关系(RO)、相似关系(RL)、来源中的同义关系(SY)、非特异性的来源相关关系(RQ)、上位关系(PAR)、下位关系(CHD)、同位关系(SIB)、允许限制关系(AQ)和受限关系(QB)。
"additionalRelationLabel",例如: "inverse_isa",( relation attribute ),对关系的补充说明标签,这里是54中语义关系展示的语义树
(太多了,这里只展示一部分,具体可通过上述链接查询,统计后发现有1024种)
"relatedIdName": 是关系的目标端概念名称
从总体返回结果看,154种概念对应的语义分类并没有给出,也许在关系查询时,这部分并不重要,语义网络中的54种关系类型,以及超级叙词表中的11种概念隐含关系才是我们在处理关系返回结果时需要关注的部分。