torch中获取训练数据用到的迭代类实现方式

本文详细介绍了在PyTorch中如何通过`__getitem__`和`__iter__,__next__`方法来实现数据迭代,以及它们在处理训练数据时的区别。前者提供直接索引访问,后者需要自定义索引并遵循迭代协议。
摘要由CSDN通过智能技术生成

在torch中获取训练数据常用到迭代类,有以下两种实现方式,self.info相当于处理好的所有数据,一般是一个list。
**

1. 类中使用__getitem__方法

**

class Person:
    def __init__(self):
        self.info = [[i] for i in range(10)]
    
    def __getitem__(self, index):
        print(index) # index会自动加
        return self.info[index]

p = Person()
for item in p:
    print(item, 666)

执行结果
在这里插入图片描述

**

2. 类中使用__iter__和__next__方法

**

class Person:
    def __init__(self):
        self.info = [[i] for i in range(10)]
        self.index = -1

    def __iter__(self):
        print('iter')
        return self
    
    def __next__(self):
        self.index += 1
        if self.index < len(self.info):
            return self.info[self.index]
        else:
            raise StopIteration('end')

p = Person()
print(888)
for item in p:
    print(item, 999)

执行结果
在这里插入图片描述
从执行结果可以看出执行迭代之前会调用一次__iter__,之后才开始迭代;另外,不同于第一种方式,需要自定义索引

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值