微表情识别相关数据集及获取地址、微表情识别数据集、微表情数据集

使用数据集需要自己签订协议,给作者发送邮件下载,所以由于版权的问题,在这里就只能提供相关的下载地址和方法,并没有直接把数据集放在这

SMIC: http://www.cse.oulu.fi/SMICDatabase

SAMM数据集:MH Yap - Datasets/Software

CASME 、CASME2、CAS(ME)^2 :欢迎访问傅小兰课题组网站(链接点进去,在右侧有三个数据集的相应栏目) 

相关比赛会议:

MEGC2018:MEGC Workshop | IEEE FG 2018

MEGC2019: Facial-Micro-Expression-Grand-challenge

MEGC 2020 :MEGC2020

### 微表情识别数据集 CASME2 的获取方法 微表情作为一种短暂且不易察觉的人类情绪表现形式,在情感计算和人工智能领域具有重要的研究价值。为了支持这一领域的研究工作,CASME2 数据集被广泛应用于微表情识别的任务中[^1]。 #### 数据集简介 CASME2 是目前最常用的微表情数据库之一,它提供了丰富的微表情样本,覆盖多种情绪类别和表情变化模式。这些样本能够帮助研究人员深入理解微表情的特点及其背后的情感信息[^2]。 #### 下载途径 对于希望获得 CASME2 数据集的研究人员或开发者来说,可以通过以下方式完成下载: 1. **官方渠道** 访问 CASME2 官方网站或者相关学术机构发布的链接页面,通常会附带详细的使用协议和技术文档说明。具体地址可能因时间更新有所变动,请通过搜索引擎查找最新版本的发布源。 2. **第三方平台分享** 部分科研工作者会在个人主页或其他公开平台上共享已整理好的数据包。例如 CSDN 提供了一条可供参考的下载路径:<https://download.csdn.net/download/qq_53332949/89720578>。需要注意的是,从这类非正式来源获取资料时务必确认其合法性和完整性[^3]。 3. **联系作者团队** 如果遇到无法正常访问的情况,可以直接邮件联系原始论文中的通讯作者请求协助获取完整的数据集合副本。这种方式虽然耗时较长但成功率较高。 以下是简单的 Python 脚本示例代码片段展示如何初步加载本地存储的数据文件(假设为图像序列格式): ```python import os from PIL import Image def load_casme2_data(data_dir): subjects = [] for subject_folder in sorted(os.listdir(data_dir)): if not os.path.isdir(os.path.join(data_dir, subject_folder)): continue frames = [] frame_files = sorted([f for f in os.listdir(os.path.join(data_dir, subject_folder))]) for img_file in frame_files: img_path = os.path.join(data_dir, subject_folder, img_file) try: with Image.open(img_path) as im: frames.append(im.convert('L')) # Convert to grayscale except Exception as e: print(f"Error loading {img_path}: {e}") subjects.append(frames) return subjects ``` 此函数实现了遍历指定目录下的子文件夹并读取其中所有的图片帧操作,最终返回按主体分类后的灰度图列表结构以便后续处理分析。
评论 41
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值