中科院 CASME II 表情 数据库 下载

CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation

论文:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086041&type=printable

数据集下载:https://github.com/CodeStoreHub/EEG-datasets

  1. 数据集来源

    • CASME II 是由中国科学院心理研究所(Institute of Psychology, Chinese Academy of Sciences)创建的,主要用于研究微表情的自动识别和分析。
  2. 参与者

    • 该数据库收集了来自35名参与者(包括男女)的微表情视频数据。所有参与者都是亚裔,年龄介于22到30岁之间。
  3. 数据采集

    • 视频数据是在参与者被要求观看情感激发视频的过程中采集的,情感激发视频设计为能引发自然的情绪反应。
    • 使用高速摄像机拍摄,帧率为200 fps(每秒帧数),分辨率为640×480像素。
    • 所有视频都在控制环境下录制,以尽可能减少噪音和干扰。
  4. 微表情类别

    • 数据库中的微表情被分为7类情感类别:愤怒、厌恶、恐惧、幸福、悲伤、惊讶和中性。
  5. 标签

    • 每个视频片段都进行了详细的标注,包含了微表情的起始时间、结束时间、类别、以及情感的触发条件。标注信息是由两位面部表情分析专家通过回放视频并对其进行逐帧分析后得出的。
  6. 应用领域

    • CASME II 数据库被广泛用于微表情识别的算法开发、表情分析、情感计算、心理学研究,以及在安全领域的人机交互系统。
  7. 挑战

    • 由于微表情的持续时间极短且强度较低,自动检测和识别微表情是一项极具挑战性的任务。CASME II 提供了丰富的高质量数据,使得研究人员能够开发和测试更为先进的微表情识别算法。

使用CASME II数据集的注意事项:

CASME II 数据库的使用需要遵循许可协议,通常要求在相关学术论文中引用原始数据库论文。研究人员使用该数据库时,需确保符合伦理规范并尊重参与者的隐私权。

参考文献:

  • Yan, W.-J., Li, X., Wang, S.-J., Zhao, G., & Liu, Y.-J. (2014). CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation. PLOS ONE, 9(1), e86041.

这个数据库为微表情研究提供了坚实的数据基础,是微表情自动检测与分析领域的重要资源。

数据预览:

### 关于CASME II表情数据库的技术资料 #### 技术背景 CASME II 是由中科院自动化研究所发布的一个改进型自发性微表情数据库,其设计目标是为了提供更高质量和更大规模的微表情样本用于研究分析[^3]。 #### 数据集特点 该数据集中包含了多种情绪类别下的微表情视频片段,相较于早期版本(如CASME),它提供了更高的分辨率以及更加丰富的标注信息。具体来说,每个样本都经过严格筛选并配有详细的元数据描述,包括但不限于动作单元编码、持续时间等参数。 #### 获取方式 对于希望获取此数据集的研究人员而言,通常需要遵循以下流程来完成下载申请过程: 1. **访问官方网站**: 需要前往官方指定页面提交请求表单。 2. **填写表格**: 提供必要的个人信息及项目简介以便审核团队评估申请人资格。 3. **签署协议书**: 获得批准后需同意相关使用条款以确保资源被正当利用。 4. **接收链接**: 完成上述步骤之后即可得到正式授权并通过邮件或其他渠道获得实际文件地址。 以下是模拟实现读取本地存储图像序列作为输入源的一段Python脚本示例: ```python import cv2 from os import listdir from os.path import isfile, join def load_images_from_folder(folder_path): images = [] onlyfiles = [f for f in listdir(folder_path) if isfile(join(folder_path, f))] for filename in sorted(onlyfiles): # Ensure correct order of frames. img = cv2.imread(join(folder_path,filename)) if img is not None: images.append(img) return images folder_path = './path_to_casmeii_frames/' frames_list = load_images_from_folder(folder_path) print(f'Total number of loaded frames: {len(frames_list)}') ``` 以上代码展示了如何加载来自特定目录下所有图片帧的方法,这对于处理像 CASME II 这样的基于帧的数据非常有用。 #### 注意事项 由于涉及隐私保护等问题,在未取得适当许可之前不得随意传播或公开分享任何部分原始素材内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值