139.单词拆分
给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。
说明:
拆分时可以重复使用字典中的单词。
你可以假设字典中没有重复的单词。
class Solution:
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
dp = [False]*(len(s)+1)
dp[0] = True
for i in range(len(s)):
for j in range(i + 1):
if dp[j] and s[j:i+1] in wordDict:
dp[i + 1] = True
break
return dp[-1]
42.接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
动态规划:
两个数组保存对应位置往左和往右的最大高度,然后遍历高度数组,找到低的那个最大高度,减去当前位置高度得到结果。
class Solution:
def trap(self, height: List[int]) -> int:
if not height:
return 0
n = len(height)
left_max, right_max = [0] * n, [0] * n
left_max[0] = height[0]
right_max[-1] = height[-1]
ans = 0
for i in range(1, n):
left_max[i] = max(height[i], left_max[i - 1])
for i in range(n - 2, -1, -1):
right_max[i] = max(height[i], right_max[i + 1])
for i in range(n):
ans += min(left_max[i], right_max[i]) - height[i]
return ans
左右指针:
左右两个指针,更新更小的位置,如果当前高度比max大,更新max,否则计算ans
每次更新时当前位置的最大值是左右两边最大的较小值,所以直接用一边的max减,每次遇到比max大,只更新,因为左边兜不住。
因为每次左边更新时右边的数组值一定比当前位置大,而且left_max存储的值也一定比right_max小,因为如果left-max比右边所有值都大,就会继续更新右边不会走到左边来。
class Solution:
def trap(self, height: List[int]) -> int:
n = len(height)
left_max = right_max = ans = 0
left, right = 0, n - 1
while left <= right:
if height[left] < height[right]:
if height[left] > left_max:
left_max = height[left]
else:
ans += left_max - height[left]
left += 1
else:
if height[right] > right_max:
right_max = height[right]
else:
ans += right_max - height[right]
right -= 1
return ans
413.等差数列划分
如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列。
动态规划:
dp数组保存以当前位置i为末尾的数列为等差数列的个数,因为每次相对于前一位置,多了一个三个数长度的数组,所以每次+1,最后求和得到结果。
class Solution:
def numberOfArithmeticSlices(self, nums: List[int]) -> int:
n = len(nums)
dp = [0] * n
for i in range(2, n):
if (nums[i-1] - nums[i - 2] == nums[i] - nums[i - 1]):
dp[i] = dp[i - 1] + 1
return sum(dp)
优化:
滚动数组优化空间
class Solution:
def numberOfArithmeticSlices(self, nums: List[int]) -> int:
n = len(nums)
ans = dp = 0
for i in range(2, n):
if (nums[i-1] - nums[i - 2] == nums[i] - nums[i - 1]):
dp = dp + 1
ans += dp
else:
dp = 0
return ans
91.解码方法
一条包含字母 A-Z 的消息通过以下映射进行了 编码 :
‘A’ -> 1
‘B’ -> 2
…
‘Z’ -> 26
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:
“AAJF” ,将消息分组为 (1 1 10 6)
“KJF” ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。
给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。
动态规划:
若当前位置两位为9到27之间,则加上dp[i-2],若当前位置不为0,则加上dp[i-1]
class Solution:
def numDecodings(self, s: str) -> int:
n = len(s)
dp = [0] * (n + 1)
dp[0], dp[1] = 1, int(s[0] != '0')
for i in range(2, n + 1):
if s[i - 2] != '0' and 9 < int(s[i - 2: i]) < 27:
dp[i] += dp[i - 2]
if s[i - 1] != '0':
dp[i] += dp[i - 1]
return dp[-1]
优化:
class Solution:
def numDecodings(self, s: str) -> int:
n = len(s)
pre, cur = 1, int(s[0] != '0')
for i in range(2, n + 1):
tmp = 0
if s[i - 2] != '0' and 9 < int(s[i - 2: i]) < 27:
tmp = pre
if s[i - 1] != '0':
tmp += cur
cur, pre = tmp, cur
return cur
96.不同的二叉搜索树
给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
假设 n 个节点存在二叉排序树的个数是 G (n),令 f(i) 为以 i 为根的二叉搜索树的个数,则
G
(
n
)
=
f
(
1
)
+
f
(
2
)
+
f
(
3
)
+
f
(
4
)
+
.
.
.
+
f
(
n
)
G(n) = f(1) + f(2) + f(3) + f(4) + ... + f(n)
G(n)=f(1)+f(2)+f(3)+f(4)+...+f(n)
当 i 为根节点时,其左子树节点个数为 i-1 个,右子树节点为 n-i,则
f ( i ) = G ( i − 1 ) ∗ G ( n − i ) f ( i ) = G ( i − 1 ) ∗ G ( n − i ) f(i) = G(i-1)*G(n-i)f(i)=G(i−1)∗G(n−i) f(i)=G(i−1)∗G(n−i)f(i)=G(i−1)∗G(n−i)
综合两个公式可以得到 卡特兰数 公式
G
(
n
)
=
G
(
0
)
∗
G
(
n
−
1
)
+
G
(
1
)
∗
(
n
−
2
)
+
.
.
.
+
G
(
n
−
1
)
∗
G
(
0
)
G
(
n
)
G(n) = G(0)*G(n-1)+G(1)*(n-2)+...+G(n-1)*G(0)G(n)
G(n)=G(0)∗G(n−1)+G(1)∗(n−2)+...+G(n−1)∗G(0)G(n)
class Solution:
def numTrees(self, n: int) -> int:
dp = [0] * (n + 1)
dp[0], dp[1] = 1, 1
for i in range(2, n + 1):
for j in range(1, i + 1):
dp[i] += dp[j - 1] * dp[i - j]
return dp[-1]
931.下降路径最小和
给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。
下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。
思路: 从下到上依次加上可以得到的最小值,边界上用min和max处理。
class Solution:
def minFallingPathSum(self, matrix: List[List[int]]) -> int:
while len(matrix) >= 2:
cur = matrix.pop()
matrix[-1] = [ matrix[-1][i] + min(cur[max(0, i - 1): min(i + 2, len(cur))]) for i in range(len(cur))]
return min(matrix[0])
120.三角形最短路径和
给定一个三角形 triangle ,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。
类似上题
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
while len(triangle) >= 2:
cur = triangle.pop()
triangle[-1] = [triangle[-1][i] + min(cur[i: min(i + 2, len(cur))]) for i in range(len(triangle[-1]))]
return triangle[0][0]
1314. 矩阵区域和
给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和:
i - k <= r <= i + k,
j - k <= c <= j + k 且
(r, c) 在矩阵内。
利用前缀和数组计算。
class Solution:
def matrixBlockSum(self, mat: List[List[int]], k: int) -> List[List[int]]:
m, n = len(mat), len(mat[0])
proSum = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
proSum[i][j] = proSum[i-1][j] + proSum[i][j-1] - proSum[i-1][j-1] + mat[i - 1][j - 1]
def get(i, j):
i, j = max(0, min(i, m)), max(0, min(j, n))
return proSum[i][j]
for i in range(m):
for j in range(n):
mat[i][j] = get(i+k+1, j+k+1) - get(i-k, j+k+1) - get(i+k+1, j-k) + get(i-k, j-k)
return mat