定积分和多元函数Day8

1.定义

\int_{a}^{b}f_(x)dx

表示在区间[a,b]之间函数f(x)的面积。

将[a,b]区间分成无数个单位,每个单位长度为\Delta x_{i}

\Delta x_{i}=x_{i}-x_{i-1}

在每个区间内取一个点a_{i},则区间\Delta x_{i}的面积为

\Delta x_{i}\times f_{a_{i}}

所以整个[a,b]区间的面积为

\int_{a}^{b}f_{x} dx=\lim _{ n \to\infty}\sum_{i=1}^{n}f_{a_{i}}\Delta x_{i}

2.性质

线性:\int_{a}^{b}cf_{x}+dg_{x}dx=c\int_{a}^{b}f_{x}dx+d\int_{a}^{b}g_{x}dx      c,d为常数

区间可加性:\int_{a}^{b}f_{x}dx=\int_{a}^{c}f_{x}dx+\int_{c}^{b}f_{x}dx    a≤c≤b

积分上下界交换:\int_{a}^{b}f_{x}dx=-\int_{b}^{a}f_{x}dx

积分中值定理:如果函数 f(x) 在闭区间 [a,b] 上连续,则存在 c∈[a,b]

\int_{a}^{b}f_{x}dx=f_{c}(b-a)

3.微积分基本公式

牛顿莱布尼茨公式

\int_{a}^{b}f_{x}dx=F_{b}-F_{a}

F_{x}f_{x}的原函数

4.定积分换元法

例题:\int_{0}^{1}\sqrt{1-x^2}dx

x=cos\theta

dx=-sin\theta d\theta

\because x\epsilon [0,1]

\therefore \theta \epsilon [0,\frac{\pi }{2}]

\int_{0}^{\frac{\pi}{2}}-\sqrt{1-cos^2\theta}sin\theta d\theta\Rightarrow \int_{0}^{\frac{\pi}{2}}-sin^2\theta d\theta\Rightarrow \int_{\frac{\pi}{2}}^{0}sin^2\theta d\theta

\because sin^2\theta =\frac{1-cos2\theta}{2}

\therefore \int_{0}^{\frac{\pi}{2}}(\frac{1-cos2\theta}{2})d\theta\Rightarrow \frac{\theta}{2}\vert_{0}^{\frac{\pi}{2}}- \frac{sin2\theta}{4}\vert_{0}^{\frac{\pi}{2}}

\therefore \int_{0}^{1}\sqrt{1-x^2}dx=\frac{\pi}{4}

5.多元函数

二元极限

设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当0<\sqrt{(x-a^2)+(y-b^2)}<\delta时,总有:∣f(x,y)−L∣<ϵ则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:\lim_{(x,y)\rightarrow (a,b)}f_{(x,y)}=L

几何意义

当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。

如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。

6.偏导数

‌偏导数是‌多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。

这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。‌

定义

设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:

\lim_{\Delta x\rightarrow 0}\frac{f_{(x_{0}+\Delta x,y_{0})}-f_{(x_{0},y_{0})}}{\Delta x}

存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:

\frac{\vartheta f}{\vartheta x}\vert (x_{0},y_{0})或者f'_x{(x_{0},y_{0})}

类似地,如果极限:

\lim_{\Delta y\rightarrow 0}\frac{f_{(x_{0},y_{0}+\Delta y)}-f_{(x_{0},y_{0})}}{\Delta y}

存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:

\frac{\vartheta f}{\vartheta y}\vert (x_{0},y_{0})或者f'_y{(x_{0},y_{0})}

偏导数的计算方法‌

对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;求z对y的偏导数时,将x看作常量,对y求导数。

例:求z=x^2sin2y的偏导数

\frac{\vartheta z}{\vartheta x}=2xsin2y

\frac{\vartheta z}{\vartheta y}=2x^2cos2y

7.全微分

定义

如果函数z=f(x, y)在点(x, y)处的全增量

\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)

\Delta z=A\Delta x+B\Delta y+o(\rho )

其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。

可微的必要条件条件

若z=f(x,y)在(x,y)点处可微,则偏导数

f'_{x}(x,y) f'_{y}(x,y)

存在,且dz=f'_{x}(x,y)\Delta x+f'_{y}(x,y)\Delta y或者dz=f'_{x}(x,y)dx+f'_{y}(x,y)dy

可微的充分条件

z=f(x,y)在(x,y)的某个邻域内有连续的偏导数

f'_{x}(x,y) f'_{y}(x,y)

在(x,y)处可微dz=f'_{x}(x,y)\Delta x+f'_{y}(x,y)\Delta y或者dz=f'_{x}(x,y)dx+f'_{y}(x,y)dy

近似计算

z=f(x, y)在点(x, y)处的全增量为

\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)

全微分为

dz=f'_{x}(x,y)\Delta x+f'_{y}(x,y)\Delta y

在计算中通常使\Delta \approx dz

因此f(x+\Delta x,y+\Delta y)\approx f'_{x}(x,y)\Delta x+f'_{y}(x,y)\Delta y+f(x,y)

8.梯度

梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。

定义

设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:

\nabla f(a)=(\frac{\vartheta f}{\vartheta x_{1}}(a),\frac{\vartheta f}{\vartheta x_{2}}(a),...,\frac{\vartheta f}{\vartheta x_{n}}(a))

其中\frac{\vartheta f}{\vartheta x_{i}}(a)是函数f在点a处对i个自变量的偏导数。

性质

  1. 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。

  2. 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。

沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。

梯度下降

梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。

算法步骤

  1. 初始化:选择一个初始点 x0。

  2. 迭代更新:对于每次迭代 k,计算当前点的梯度 \nabla f(x_{k}) ,并更新参数x_{k+1}=x_{k}-\eta \nabla f(x_{k}) η是学习率(步长),控制每次更新的步幅。

  3. 终止条件:当梯度的模足够小或达到预设的迭代次数时,停止迭代。通常,终止条件可以是以下几种:

        梯度的模足够小:当梯度的模(或范数) \vert\vert \nabla f(xk)\vert\vert 小于某个阈值时,停止迭代。

\vert\vert \nabla f(xk)\vert\vert=\sqrt{(\frac{\vartheta f}{\vartheta x_{1}})^2+(\frac{\vartheta f}{\vartheta x_{2}})^2,...,(\frac{\vartheta f}{\vartheta x_{n}})^2}

        达到预设的迭代次数:当迭代次数达到预设的最大迭代次数时,停止迭代。

        函数值变化足够小:当函数值的变化\vert f(x_{k+1})-f(x_{k}) 小于某个阈值时,停止迭代。

学习率

学习率 η是一个重要的超参数,控制着每次更新的步幅。选择合适的学习率对于梯度下降算法的性能至关重要:

  • 学习率过大:如果步幅过大,算法可能会“跳过”最优解,导致在最优解附近来回震荡。

  • 学习率过小:可能导致算法收敛速度过慢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值