概率基础Day10

1.连续型随机变量及概率密度函数

频率密度直方图性质:

  1. 每个小长方形面积等于该组的频率,即频率密度x组距=频率/组距x组距=频率
  2. 所有长方形面积之和为1
  3. 介于x=a、x=b之间的面积近似于(a,b]的频率
  4. 当组距取得很小,形成一条光滑曲线,该曲线可看作概率密度函数

连续型随机变量的特点:

  1. 连续性:随机变量的取值是连续的,可以在一个或多个区间内取任意值。
  2. 不可数性:取值是不可数的,即有无限多个可能的取值。
  3. 概率分布:每个取值区间都有一个特定的概率,且整个取值范围的概率密度函数积分等于1。
  4. 连续型的随机变量取值在任意一点的概率都是0。在函数曲线上某个点的概率其实是取的该点附近 值的大小。
  5. 连续情况下,端点无所谓。P{a≤x≤b}=P{a<x<b}

概率密度函数 

对于一维实随机变量X,如果存在非负可积函数f(x),使得对于任意实数x,在a≤x≤b上有

 称f(x)为随机变量X的概率密度函数。

概率密度函数具有非负性(对于所有的f(x)≥0)和归一性(在取值范围内f(x)的积分为1)

#概率密度函数的积分其实就是求曲线在某个区间内的面积。

2.分布函数 

累积分布函数(CDF)

对于随机变量 X,其累积分布函数 F(x) 定义为随机变量 X 取值小于或等于 x 的概率:

 CDF具有

  1. 非减性(F(x1)≤F(x2)对于所有x1≤x2成立),
  2. 值域为1(0≤F(x)≤1),
  3. 边界条件为当x趋近负无穷时F(x)=0当x趋近正无穷时F(x)=1,
  4. 右连续:F(x) 在任意点 x 都是右连续的。对于离散型随机变量,F(x) 在任意点 x 是右连续,对于连 续型随机变量,F(x) 在任意点 x 是连续的。

对于离散型随机变量:

CDF是阶梯式的,每个可能的取值点都有一个跳跃。

 记作:

对于连续型随机变量:

CDF是概率密度函数的积分(PDF),并且是连续和光滑的(除非在某些点上有跳跃)。

记作:

 分布函数其实就是求曲线在某个区间内的面积。

 3.常见的分布

  • 伯努利分布:描述单次试验成功或失败的概率,参数为成功的概率p。

       x 可以是0或1,p 是成功(x=1)的概率, 1−p 是失败(x=0)的概率。

       0-1分布式伯努利试验只做一次的分布函数,如果是n重伯努利试验,分布函数则为:

  • 几何分布:描述首次成功前的试验次数,参数为单次试验成功的概率p。

       其中:k 是获得第一次成功时试验的次数,

                 k=1,2,3,… p 是单次试验成功的概率。

                 1−p 是单次试验失败的概率。 

  • 二项分布:描述n次独立重复试验中成功次数的概率分布,参数为试验次数n和单次试验成功的概率p。记作 X∼B(n,p)。

       其实就是事件概率中的伯努利公式。

       k 取最接近 (n+1)p 的整数: 1. (n+1)p不为整数,则取最接近 (n+1)p 的整数为最大值。

                                                 2. (n+1)p为整数,则取 (n+1)p 和(n+1)p-1都是最大值。

  • 泊松分布:描述单位时间或空间内事件发生次数的概率分布,参数为单位时间内事件平均发生的次数λ。

        其中:

        k 是事件发生的次数,k=0,1,2,…。 λ 是单位时间(或单位面积)内事件平均发生的次数。 

  • 均匀分布 描述在固定区间内各点取值概率相等的情况。

       对于连续型随机变量 X,如果它服从区间 [a,b]上的均匀分布,其概率密度函数(PDF)为:

       其中: a 是区间的下界。 b 是区间的上界。 b−a 是区间的长度。 

       累积分布函数(CDF):

       

  • 指数分布 描述两个连续事件发生之间的时间间隔的概率。

       概率密度函数(PDF):

       x 是随机变量,表示事件发生的时间间隔。

       λ 是率参数,表示单位时间内事件发生的平均次数。 

       分布函数(CDF):

       

  • 正态分布 

    正态分布,又称为高斯分布(Gaussian Distribution),是一种连续概率分布,是统计学中最重要的一种概率分布。许多自然和社会现象的分布都近似于正态分布。记作:

        概率密度函数(PDF):

       其中: x 是随机变量。 μ 是均值。 σ是标准差。 σ^2是方差。 

       性质

        y=f(x)以x=u为对称轴

        x=u时,f(x)取到最大值

        y=f(x)以x轴为渐近线,x±σ为拐点

       σ固定,u变化,图像左右移动;u固定,σ变小,最高点上移,σ变大,最高点下移。

       分布函数(CDF):

       

  •  标准正态分布

       标准正态分布的均值为0,标准差为1

       PDF:

       CDF:

        性质

        y轴是对称轴,为偶函数

        概率密度函数:根据偶函数定义可知,

        分布函数

  •  正态分布标准化 

        先中心化将 X 减去均值 μ,得到一个新的随机变量 Y:

        标准化:将 Y 除以标准差 σ,得到一个新的随机变量 Z: 

        标准化正态分布和正态分布的关系

4. 二维随机变量及其分布

定义

  • 二维随机变量是一对随机变量 (X,Y)(X,Y),其中 XX 和 YY 来自同一个样本空间。

联合分布函数 F(x,y)F(x,y)

  • 几何意义:表示 (x,y)(x,y) 左下方的面积。
  • 性质
    1. 0≤F(x,y)≤10≤F(x,y)≤1
    2. 非减性:例如,当 yy 固定,x1<x2x1​<x2​ 时,F(x1,y)≤F(x2,y)F(x1​,y)≤F(x2​,y)
    3. F(−∞,y)=F(x,−∞)=F(−∞,−∞)=0F(−∞,y)=F(x,−∞)=F(−∞,−∞)=0,F(+∞,+∞)=1F(+∞,+∞)=1
    4. 关于 xx 和 yy 右连续
  • 边缘分布
    1. X的边缘分布:这表示在所有可能的 Y 值上,X 取值 x 的概率总和。从图形曲线上理解就是求小于x的所有点的面积,Y 随意取值。
    2. Y的边缘分布:表示在所有可能的 X 值上,Y 取值 y的概率总和。从图形曲线上理解就是求小于y的所有点的面积,X随 意取值。

5.二维离散型随机变量的联合分布和边缘分布

联合概率质量函数 P(X=x,Y=y) 描述了随机变量 X 和 Y 同时取特定值 x 和y 的概率。联合PMF满足以下性质:

  1. 非负性:对于所有的 x 和 y,有 P(X=x,Y=y)≥0。

  2. 归一性:所有可能的 x 和 y 值的概率之和等于1,即:

联合分布函数

概率分布表解释:

F(x,y)的值就是在分布表中找到对应的(x,y)对应的位置,然后将其左上角的概率相加。

边缘分布函数

1. 边缘PMF

表示随机变量 X 取特定值 x 的概率,不考虑 Y的值。计算方法为:

 其中,求和是对所有可能的 y 值进行。

表示随机变量 Y取特定值 y 的概率,不考虑 X 的值。计算方法为:

其中,求和是对所有可能的 x 值进行。

6.二维连续随机变量的联合密度和边缘密度函数 

 对于二维连续随机变量 X 和 Y,其分布函数为:

F(x,y)是分布函数,f(x,y)是联合密度函数。 

f(x,y)的性质:

  1. 非负性:对于所有的 x 和 y,有 f(x,y)≥0。
  2. 归一性:在整个 x 和 y 的取值范围上的积分等于1,即:

边缘密度函数

边缘分布函数:

求X的边缘密度函数就是对y求积分,对Y的边缘密度函数就是对x求积分。 

7.条件分布 

条件分布是指在已知另一个随机变量或事件的条件下,该随机变量的概率分布。

 8.离散型随机变量的条件分布

其中 P(X=x,Y=y)是 X 和 Y的联合概率质量函数,P(Y=y) 是 Y 的边缘概率质量函数。 

9.连续型随机变量的条件分布 

 假设

求 在Y=y的条件下,X的条件密度函数;在X=x的条件下,Y的条件密度函数。 

解 

 10.随机变量的独立性

定义

两个随机变量 XX 和 YY 被称为独立的,如果它们满足以下条件:

对于连续型随机变量:它们的联合概率密度函数f(x,y)可以表示为各自边缘概率密度函数的乘积: 

 对于离散型随机变量:它们的联合概率质量函数P(X=x,Y=y)可以表示为各自边缘概率质量函数的乘积:

11.二维随机变量函数的分布 

11.1二维离散型随机变量函数的分布 

二维离散型随机变量函数的分布指的是在给定两个离散型随机变量 X 和 Y的情况下,它们函数Z=g(X,Y)的分布。这里g(X,Y)是一个定义在 X和 Y取值范围内的函数。要找到函数 Z 的分布,我们需要确定 Z 的每一个可能值的概率。具体步骤如下:

  1. 确定函数的输出值:列出函数 Z=g(X,Y)可能的所有输出值。

  2. 计算每个输出值的概率:对于每一个可能的输出值 z,计算 Z=z的概率。这通常涉及到对 X 和 Y的联合概率质量函数 P(X=x,Y=y)进行求和。

  3. 构建概率质量函数:构建函数 Z 的概率质量函数,即对于每一个可能的 z,确定 P(Z=z)。

11.2二维连续型随机变量函数的分布

二维连续型随机变量函数的分布是指由两个连续型随机变量 (X,Y)构成的联合分布,并通过某种函数关系 Z=g(X,Y)得到一个新的随机变量 Z的分布。

假设 (X,Y)是一个二维连续型随机变量,其联合概率密度函数为 f(x,y)。设 Z=g(X,Y) 是一个函数关系,其中 g 是一个已知的函数。我们需要找到 Z 的概率密度函数

具体步骤如下:

  1. 计算 Z的累积分布函数

     

    这可以通过对联合分布函数进行积分得到:

  2. 求导得到概率密度函数

对于某些特定的函数 g(X,Y),可以直接求出 Z 的概率密度函数。例如,如果 g(X,Y)=X+Y,则可以通过以下步骤求出 Z 的概率密度函数:

  1. 确定 Z 的范围:

    Z=X+Y 确定 Z 的可能取值范围。

  2. 计算 Z的概率密度函数:

     

    这称为卷积公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值