【WLSM、FDM状态估计】电力系统状态估计研究(Matlab代码实现)

 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 WLSM状态估计法

2.2 FDM状态估计法

2.2 其他情况 

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

尽管量测覆盖率很低,配电网状态估计从九十年代就开始从输电网状态估计拓展传统的状态估计采用最小二乘估计器[36],在存在不良数据时估计效果不理想,需要引入网络拓扑结果辨识、不良数辨识和参数辨识。除了最小二乘估计器,文献[37]讨论了最小平方中值(Least Median of Squares,LMS)估计器和截尾最小二乘(Least Trimmed Squares,LTS)估计器在有不良数据的状态估计的优越性,但是在估计过程中需要较高的量测冗余度和较多的计算时间。文献[38]讨论了最小绝对值(Least Absolute Value, LAV)估计器在不良数据和错误参数存在时的鲁棒性,但其所需的计算时间较长。文献[39]应用广义的极大似然(Generalized Maximum-likelihood,GM)估计器替代WLS增加状态估计的鲁棒性。在配电网状态估计中,围绕不同状态量的选取和多种量测数据的选择,WLS估计器仍然是最常用最成熟的估计器。根据不同状态量的选取,比较常见的是以节点电压为状态变量[40-44|和以支路电流为状态量的状态估计方法,两者都可以用极坐标或者直角坐标来表示。
1)以节点电压为状态量的状态估计方法。
以节点电压为状态量有直角坐标系下的节点电压实部与虚部为状态量和极坐标形式下节点电压幅值与相角的状态量(40]两种,其在输电网中发展十分完善,最初就被拓展到配电网状态估计中。文献选择极坐标形式的节点电压作为状态变量,量测处理能力强,计算精度高,但是每次迭代时都需要重新计算量测雅可比矩阵和增益矩阵。文献[42]将节点注入功率量测等效成节点注入电流相量
量测,支路功率量测和支路电流幅值量测等效成支路电流相量量测,使得迭代方程组的雅可比矩阵常数化,利用极坐标形式下的节点电压为状态量进行最小二乘状态估计。
 

📚2 运行结果

2.1 WLSM状态估计法

2.2 FDM状态估计法

 

2.2 其他情况 

在命令框输入不同情况就可以得到不一样的结果。

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]漆家炜.电力系统状态估计程序 v1.0

[2]漆家炜. 面向电网不同拓扑的反时限过流保护整定计算研究[D].华中科技大学,2020.DOI:10.27157/d.cnki.ghzku.2020.002540.

[3]董丽澜. 电力系统状态估计、参数辨识及量测优化配置方法研究[D].浙江大学,2022.DOI:10.27461/d.cnki.gzjdx.2022.002154.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值