💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于CNN-LSTM的负荷预测研究文档
一、研究背景与意义
随着智能电网技术的快速发展,电力负荷预测在电力系统的运行和规划中扮演着越来越重要的角色。准确的负荷预测对于保障电网的安全、经济、高效运行具有重要意义。然而,电力负荷数据往往受到多种因素的影响,如天气、节假日、经济活动等,使得负荷预测具有高度的复杂性和不确定性。传统的预测方法如时间序列分析、线性回归等在处理非线性、季节性和复杂波动性数据时表现有限。因此,研究基于深度学习技术的负荷预测方法,旨在提高负荷预测的精度和鲁棒性。
二、CNN-LSTM模型概述
CNN-LSTM模型是一种结合了卷积神经网络(CNN)和长短时记忆网络(LSTM)的混合预测模型。该模型充分利用了CNN在特征提取方面的优势以及LSTM在处理时间序列数据时的长处,实现了对负荷数据的时空特性的有效捕捉。
- 卷积神经网络(CNN):
- CNN通过卷积层和池化层等结构,能够有效地提取输入数据的局部特征和空间信息。
- 在负荷预测中,虽然负荷数据本身是一维时间序列,但可以通过一定的方式将其转化为二维图像形式,从而利用CNN进行特征提取。
- 长短时记忆网络(LSTM):
- LSTM是一种特殊的循环神经网络(RNN),通过引入门控机制和记忆单元,解决了传统RNN在处理长时间依赖问题时的困难。
- LSTM具有记忆和遗忘的能力,能够根据输入信息动态地调整其内部状态,从而实现对时间序列数据的长期依赖建模。
三、模型构建与实现
- 数据预处理:
- 收集历史电力负荷数据,并进行必要的清洗和规范化处理,以消除异常值和噪声。
- 对数据进行归一化处理,使其更适合模型训练。
- 模型设计:
- 设计CNN部分,用于提取负荷数据的空间特征。CNN层数、卷积核大小、步长等参数需根据具体数据情况进行调整。
- 设计LSTM部分,用于捕捉负荷数据的时序特性。LSTM层数、神经元数量等参数也需根据具体任务进行优化。
- 将CNN提取的特征序列输入到LSTM网络中进行序列建模。
- 模型训练:
- 使用训练数据集对CNN-LSTM模型进行训练。
- 在训练过程中,通过反向传播算法和梯度下降法优化模型参数。
- 可以采用正则化、Dropout等策略防止模型过拟合。
- 预测与评估:
- 使用训练好的CNN-LSTM模型进行负荷预测。
- 采用多种评估指标(如MSE、RMSE、MAE、MAPE等)对预测结果进行评估。
四、实验结果与分析
通过实验验证,基于CNN-LSTM的负荷预测模型在各项指标上均优于传统的单一模型(如LSTM、CNN等)。具体而言,该模型能够更准确地捕捉负荷数据的时空特性,提高预测的准确性和稳定性。
五、结论与展望
基于CNN-LSTM的负荷预测模型为电力系统负荷预测提供了一种新的思路和方法。该模型通过结合CNN和LSTM的优势,实现了对负荷数据的高效处理和准确预测。未来研究可以进一步探索模型参数的优化、不同数据源的融合以及模型的可解释性等问题,以提高负荷预测的精度和鲁棒性。同时,随着技术的不断发展和完善,该模型有望在电力系统运行和规划中发挥更加重要的作用。
📚2 运行结果
部分代码:
# 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%']) return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table # 返回包含所有评估指标的字典。
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.
[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.
[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.
[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取