💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式
更多Matlab优化求解仿真内容点击👇
①Matlab优化求解(进阶版)
⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!
⛄一、吸波
1 多层吸波材料优化设计的结构与理论
多层吸波材料优化设计的结构如图1所示,均匀平面波垂直入射到多层吸波材料表面,中间的N层为吸波材料,底层为金属板。根据电磁波的等效传输线理论可等效为图2所示的N段不同的均匀传输线级联的电路模型[12]。
依据等效的电路模型最终可以递推地求解出多层吸波材料的等效输入阻抗。
2 数据库材料的吸波特性
吸波材料的吸波性能主要由磁性吸收剂羰基铁粉、铁硅铝等的特性决定。多层吸波材料的吸波性能跟每一层材料的吸波特性相关。因此针对设定的优化目标,需要数据库的不同材料具有交叉覆盖全频段的吸波性能。本次优化使用的数据库参数包括羰基铁粉和铁硅铝与石蜡不同比例混合制环测得的电磁参数。
可见随着吸收剂比例的提高,反射率的吸收峰向低频移动,铁硅铝也具有此类规律。此外同一种材料比例一致时,随着厚度的增加,反射率峰值也向低频移动,如图4所示。
因此选用不同种类和厚度的材料进行多层设计,理论上是可以拓展吸波带宽的。此外依据文献[13]所述,为了实现某一吸波带宽的某一设定反射损耗,基于材料的性能有一个极限的最小厚度。因此在给定优化目标和数据库之后,多层优化设计展宽带宽有一个上限。这个上限由材料库材料性能、优化目标频段、总厚度约束、最小反射损耗所共同决定。
⛄二、部分源代码
%%--------------吸波优化主函数----------------------%%
clc;
close all;
clear all;
%%吸波结构参数设置
TEorTM=01;
freq=linspace(8,12,100); %设置频率,单位GHz,8-12GHz区间内均匀取100个频率点计算
CtrlAngInc=0;
NLayer=5; %设置吸波材料的层数,这里是5层
TThick=5; %吸波层总厚度限制为最大5mm
LThick=TThick/NLayer; %每一层的平均厚度限制
NVAR=2*NLayer; %自变量的个数,10个
MAT=16; %构成吸波材料的材料种类
LB=repmat([1, 0],[1,NLayer]); %设置各层的变量下限 repmat函数复制数组
UB=repmat([MAT, LThick],[1,NLayer]); %设置各层的变量上限
%%算法参数设定
pop = 30;
%种群数量
dim=10;
%变量维度
maxIter = 500;
%最大迭代次数
ub=10;
lb=-10;
%%目标函数,设置适应度函数
f=@(x)ObjRefl(x);
%借助函数句柄间接调用目标函数,@是定义句柄的运算符
%%灰狼算法求解问题;改进灰狼算法求解问题
[x,fval,IterCurve] = GWO(pop,dim,UB,LB,f,maxIter);
%[x,fval,IterCurve] = WOA(pop,maxIter,lb,ub,dim,f);
%[x,fval,IterCurve] = SCA(pop,maxIter,lb,ub,dim,f);
%matlab优化函数,x是返回的自由变量的取值,fval是返回的目标函数的取值
%%绘制算法迭代图像
figure(1);
semilogy(IterCurve,‘b’,‘LineWidth’,1.5,‘MarkerSize’, 8);
hold on
%绘制迭代曲线二维图像,线宽为2,红色
title(‘迭代曲线’);
xlabel(‘迭代次数’);
ylabel(‘最佳适应度值’);
grid on
box on
axis tight
legend(‘GWO’);
%%绘制频率反射系数图像
[ObjV, refl_freq]=ObjRefl(x); %Objv返回最优适应度值,refl_freq返回复数形式反射系数数组
r=abs(refl_freq); %返回refl_freq数组中每个元素的的模
optr=20*log10®; %反射系数值以分贝形式表示,单位db
figure(2);
plot(freq,optr,‘b’,‘LineWidth’,1.5,‘MarkerSize’, 8);
hold on
title(‘频率-反射系数’);
xlabel(‘频率’);
ylabel(‘反射系数’);
grid on
box on
axis tight
legend(‘GWO’);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]邢正维,梁迪飞,刘川,刘倩,李健骁.一种基于改进遗传算法的宽带吸波材料优化设计方法[J].电子元件与材料. 2021,40(11)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合