【脑电信号】小波变换睡眠脑电信号监测【含Matlab源码 595期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab信号处理仿真内容点击👇
Matlab信号处理(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、小波变换睡眠脑电信号监测简介

理论知识参考文献:小波变换应用于麻醉监测脑电分析研究

⛄二、部分源代码

data0=rand(1,9999); %脑电信号原始数据
tm=0.02; %采样时间间隔
td=1™️30; %取时间1-30秒
data=data0(1:(30-1)/tm+1); %1-30秒的数据
figure(1)
subplot(211);
plot(td,data); xlabel(‘时间(秒)’),ylabel(‘脑波电压’),title(‘1-30s脑电图波’);

%fft变换
Fs=1000;
n=length(data);
data1=fft(data,n);%傅里叶变换%
df=Fs/length(data1); %频域分辨率
Fx=df*(0:length(data1)-1); %将横轴变为频率轴%
figure(1);
subplot(212);
plot(Fx,abs(data1)); %绘制脑电波信号的频谱图%
axis([0 150 0 60]);
title(‘频谱图’);xlabel(‘频率/Hz’);ylabel(‘幅值’);

%信号预处理
%低通滤波——巴特沃斯滤波器

Fs=1000; fp=30; fs=40; Ap=1; As=30;
Wp=fp/(Fs/2);%计算归一化角频率
Ws=fs/(Fs/2);
[N,Wc]=buttord(Wp,Ws,Ap,As);%计算阶数和截止频率
[b,a]=butter(N,Wc,‘low’);%计算H(z)分子、分母多项式系数
[H,F]=freqz(b,a,500,Fs);%计算H(z)的幅频响应,freqz(b,a,计算点数,采样速率)
figure(2)
subplot(2,2,2) ;
plot(F,20*log10(abs(H))) ;
xlabel(‘频率(Hz)’); ylabel(‘幅度(dB)’)
axis([0 100 -30 3]);
grid on ;
subplot(2,2,1)
plot(F,abs(H));
xlabel(‘频率(Hz)’);
ylabel('幅度 ') ;
title(‘低通滤波器’);
axis([0 100 0 2]);
grid on;
subplot(2,2,3);
pha=angle(H)180/pi;
plot(F,pha);
xlabel(‘频率(Hz)’);
ylabel(‘相位(dB)’)
axis([0 100 -200 200]);
grid on;
%
%
%用低通巴特沃斯滤波器
Q=filter(b,a,data);
figure(3)
subplot(211);
plot(td,Q);
title(‘过巴斯后时域图’);xlabel(‘时间’);ylabel(‘幅值’);
%fft变换
n=length(Q);
Q1=fft(Q,n);%傅里叶变换%
df=Fs/length(Q1); %频域分辨率
Fx=df
(0:length(Q1)-1); %将横轴变为频率轴%
figure(3);
subplot(212);
plot(Fx,abs(Q1)); %绘制脑电波信号的频谱图%
axis([0 50 0 60]);
title(‘频谱图’);xlabel(‘频率/Hz’);ylabel(‘幅值’);

%
%------小波阈值去噪
%------软阈值小波去噪
[c,s]=wavedec2(Q,2,‘db5’);
[thr,sorh,keepapp] = ddencmp(‘den’,‘wv’,Q);
[xc,cxc,lxc,perf0,perfl2]=wdencmp(‘gbl’,Q,‘sym4’,2,thr,sorh,keepapp);%
figure(4);
subplot(211);
plot(td,xc);
title(‘小波去噪后时域图’);xlabel(‘时间’);ylabel(‘幅值’);
u=xc;

%fft变换
n=length(xc);
xc1=fft(xc,n);%傅里叶变换%
df=Fs/length(xc1); %频域分辨率
Fx=df*(0:length(xc1)-1); %将横轴变为频率轴%
figure(4);
subplot(212);
plot(Fx,abs(xc1)); %绘制声音信号的频谱图%
axis([0 60 0 100]);
title(‘小波去噪后频谱图’);xlabel(‘频率/Hz’);ylabel(‘幅值’);

%-- 第一段波过带通滤波器------------
n=length(xc);
fs=[0.1,5];fp=[0.5,3];
fo=1200; %采样频率
wp=2.*fp./fo;ws=2.*fs./fo;
rp=1;as=40;
f = design(fdesign.bandpass(fs(1),fp(1),fp(2),fs(2),as,rp,as,fo),‘butter’);
y1=filter(f,xc);

yt1=fft(y1,n);
df=Fs/length(yt1); %频域分辨率
Fx=df*(0:length(yt1)-1); %将横轴变为频率轴%
figure(5);
subplot(3,1,1),plot(td,y1);
xlabel(‘时间(秒)’),ylabel(‘脑波电压’),title(‘1-30s第一阶段脑电图波’);
subplot(3,1,2);
plot(Fx,abs(yt1)); %绘信号的频谱图%
axis([0 6 0 100]);
title(‘第一阶段频谱图’);xlabel(‘频率/Hz’);ylabel(‘幅值’);
%功率谱
fs=800;ts=1/fs;
t=0:ts:2;
nfft=64;
power1=(norm(y1)^2/length(y1+1));
spow1=abs(fft(y1,nfft).^2);
f=(0:nfft-1)/ts/nfft;
f=f-fs/2;
figure(5);
subplot(3,1,3);
plot(f,fftshift(spow1),‘k’);
title(‘第一阶段功率谱图’);xlabel(‘频率’);ylabel(‘功率谱’);
disp([‘power1=’,num2str(power1),‘.’]);

%-- 第二段波过带通滤波器------------
n=length(u);
fs=[3,9];fp=[4,7];
fo=1200; %采样频率
wp=2.*fp./fo;ws=2.*fs./fo;
rp=1;as=40;
f = design(fdesign.bandpass(fs(1),fp(1),fp(2),fs(2),as,rp,as,fo),‘butter’);
y2=filter(f,u);

yt2=fft(y2,n);
df=Fs/length(yt2); %频域分辨率
Fx=df*(0:length(yt2)-1); %将横轴变为频率轴%
figure(6);
subplot(3,1,1);
plot(td,y2);
xlabel(‘时间(秒)’);ylabel(‘脑波电压’);title(‘1-30s第二阶段脑电图波’);
subplot(3,1,2);
plot(Fx,abs(yt2)); %绘信号的频谱图%
axis([2 15 0 50]);
title(‘第二阶段频谱图’);xlabel(‘频率/Hz’);ylabel(‘幅值’);
%功率谱
fs=800;ts=1/fs;
t=0:ts:2;
nfft=64;
power2=(norm(y2)^2/length(y2+1));
spow2=abs(fft(y2,nfft).^2);
f=(0:nfft-1)/ts/nfft;
f=f-fs/2;
figure(6);
subplot(3,1,3);
plot(f,fftshift(spow2),‘k’);
title(‘第一阶段功率谱图’);xlabel(‘频率’);ylabel(‘功率谱’);
disp([‘power2=’,num2str(power2),‘.’]);

%-- 第三段波过带通滤波器------------
n=length(u);
fs=[7,14];fp=[8,13];
fo=1200; %采样频率
wp=2.*fp./fo;ws=2.*fs./fo;

f = design(fdesign.bandpass(fs(1),fp(1),fp(2),fs(2),as,rp,as,fo),‘butter’);
y3=filter(f,u);

df=Fs/length(yt3); %频域分辨率
Fx=df*(0:length(yt3)-1); %将横轴变为频率轴%
figure(7);
subplot(3,1,1);
plot(td,y3);
xlabel(‘时间(秒)’);ylabel(‘脑波电压’);title(‘1-30s第三阶段脑电图波’);
subplot(3,1,2);
plot(Fx,abs(yt3)); %绘信号的频谱图%
axis([4 16 0 30]);
title(‘第三阶段频谱图’);xlabel(‘频率/Hz’);ylabel(‘幅值’);
%功率谱
fs=800;ts=1/fs;
t=0:ts:2;
nfft=64;
power3=(norm(y3)^2/length(y3+1));
spow3=abs(fft(y3,nfft).^2);
f=(0:nfft-1)/ts/nfft;
f=f-fs/2;
figure(7);
subplot(3,1,3);
plot(f,fftshift(spow3),‘k’);
title(‘第三阶段功率谱图’);xlabel(‘频率’);ylabel(‘功率谱’);
disp([‘power3=’,num2str(power3),‘.’]);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]王文光,魏少明,任欣.信号处理与系统分析的MATLAB实现[M].电子工业出版社,2018.
[2]徐洁.基于小波分析的脉搏波信号处理[J].电子设计工程. 2013,21(11)
[3]莫玮.小波变换应用于麻醉监测脑电分析研究[J].桂林电子工业学院学报. 1997,(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值