💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版)
⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!
⛄一、简介
1 GUI界面设计
2 原理
2.1 打开图像
点击打开图片的时候需要打开需要计算细胞的图片,则可以使用下面的代码来打开图片。
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename,pathname]=uigetfile({'*.jpg';'*.bmp, *.jpg, *.tif';'*.bmp';'*.jpg';'*.tif';},'选择图像');
if isequal(filename,0)||isequal(pathname,0)
errordlg('您还没有选取图片!!','温馨提示');%如果没有输入,则创建错误对话框
return;
else
global im; %定义全局变量将打开的照片放在该变量中。
image=[pathname,filename];%合成路径+文件名
im=imread(image);%读取图像
[x,y] = size(im); %读取图片的大小
if x>y %根据照片的长宽不同来改变图片的大小,这里定义600*800是为了减轻程序运行时电脑的压力,以及该大小取得的效果也不错。
im = imresize(im,[600 800]);
else
im = imresize(im,[800 600]);
end
set(handles.axes1,'HandleVisibility','ON');%打开坐标,方便操作
axes(handles.axes1);%%使用图像,操作在坐标1
imshow(im);%在坐标axes1显示原图像
title('原始图像');
2 .2 USM锐化
本设计是使用的是灰度图以及高斯模糊的图来实现USM锐化的,因此需要将RGB三色图转换为灰度图,而MATLAB中自带的RGB转GRAY的函数十分方便,下面是代码实现。
global gray %定义灰度图的全局变量,方便后面的函数调用
gray= rgb2gray(im); %将RGB三色图转换成gray
gray = imadjust(gray); %该函数是用来增强图像
set(handles.axes2,'HandleVisibility','ON');%打开坐标,方便操作
axes(handles.axes2);%%使用图像,操作在坐标1
imshow(gray);%在坐标axes1显示原图像
title('灰度图像');
2.3 高斯模糊图像
global Gauss
global filter
Gauss = fspecial('gaussian',[10 10],20);%获取高斯模糊算子
filter = imfilter(gray, Gauss); %获得高斯模糊图像
set(handles.axes3,'HandleVisibility','ON');%打开坐标,方便操作
axes(handles.axes3);%%使用图像,操作在坐标1
imshow(filter);%在坐标axes1显示原图像
title('模糊图像');
2.4 USM图像
有了高斯模糊和灰度图像,就可以求出USM图像,原理也不再介绍,直接放代码。
global USM
weight = 0.8;
USM = uint8((double(gray)-weight.*double(filter))./(1-weight)); %获取USM锐化图像
set(handles.axes4,'HandleVisibility','ON'); %打开坐标,方便操作
axes(handles.axes4); %使用图像,操作在坐标1
imshow(USM);%在坐标axes1显示原图像
title('锐化图像');
2.5 二值化
有了USM图像,对比度增强了许多,因此使用将图像二值化后的效果将会很好,下面是二值化函数:
function getbw(handles)
global bw%将bw变量定义为全局变量
global USM
level = get(handles.slider4,'value');%获取滑杆4的值,该滑杆是控制阈值
bw = im2bw(USM, level); %将USM锐化后图像转换为二值化图像
imorph(3, get(handles.slider5,'value'),
get(handles.slider6,'value'));%该函数是自己编写的用来腐蚀或膨胀图像
set(handles.axes5,'HandleVisibility','ON');%打开坐标,方便操作
axes(handles.axes5);%%使用图像,操作在坐标1
imshow(bw);%在坐标axes1显示原图像
title('二值化图像');
下面是获取细胞个数的函数,该函数的原理是计算连通区域个数来获取细胞个数,由于经过以上的步骤,已将细胞核分离出来,因此只用计算连通域便可得到细胞个数。
⛄二、部分源代码
function varargout = GUI(varargin)
% GUI MATLAB code for GUI.fig
% GUI, by itself, creates a new GUI or raises the existing
% singleton*.
%
% H = GUI returns the handle to a new GUI or the handle to
% the existing singleton*.
%
% GUI(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in GUI.M with the given input arguments.
%
% GUI(‘Property’,‘Value’,…) creates a new GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before GUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to GUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help GUI
% Last Modified by GUIDE v2.5 10-Jun-2018 19:38:29
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @GUI_OpeningFcn, …
‘gui_OutputFcn’, @GUI_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% — Executes just before GUI is made visible.
function GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GUI (see VARARGIN)
% Choose default command line output for GUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% — Outputs from this function are returned to the command line.
function varargout = GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename,pathname]=uigetfile({‘.jpg’;'.bmp, .jpg, .tif’;'.bmp’;'.jpg’;‘*.tif’;},‘选择图像’);
if isequal(filename,0)||isequal(pathname,0)
errordlg(‘您还没有选取图片!!’,‘温馨提示’);%如果没有输入,则创建错误对话框
return;
else
global im;
image=[pathname,filename];%合成路径+文件名
im=imread(image);%读取图像
[x,y] = size(im);
if x>y
im = imresize(im,[600 800]);
else
im = imresize(im,[800 600]);
end
set(handles.axes1,‘HandleVisibility’,‘ON’);%打开坐标,方便操作
axes(handles.axes1);%%使用图像,操作在坐标1
imshow(im);%在坐标axes1显示原图像
title(‘原始图像’);
global gray
gray= rgb2gray(im);
gray = imadjust(gray);
set(handles.axes2,'HandleVisibility','ON');%打开坐标,方便操作
axes(handles.axes2);%%使用图像,操作在坐标1
imshow(gray);%在坐标axes1显示原图像
title('灰度图像');
global Gauss
global filter
Gauss = fspecial('gaussian',[10 10],20);
filter = imfilter(gray, Gauss);
set(handles.axes3,'HandleVisibility','ON');%打开坐标,方便操作
axes(handles.axes3);%%使用图像,操作在坐标1
imshow(filter);%在坐标axes1显示原图像
title('模糊图像');
global USM
weight = 0.8;
USM = uint8((double(gray)-weight.*double(filter))./(1-weight));
set(handles.axes4,'HandleVisibility','ON');%打开坐标,方便操作
axes(handles.axes4);%%使用图像,操作在坐标1
imshow(USM);%在坐标axes1显示原图像
title('锐化图像');
getbw(handles);
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]赵勇,方宗德,庞辉,王侃伟.基于量子粒子群优化算法的最小交叉熵多阈值图像分割[J].计算机应用研究. 2008,(04)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合