【图像融合】对比度和结构提取多模态解剖图像融合【含Matlab源码 1539期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab图像处理仿真内容点击👇
Matlab图像处理(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、图像融合简介

应用多模态图像的配准与融合技术,可以把不同状态的医学图像有机地结合起来,为临床诊断和治疗提供更丰富的信息。介绍了多模态医学图像配准与融合的概念、方法及意义。最后简单介绍了小波变换分析方法。

⛄二、部分源代码

clear; close all; clc; warning off
%% A Novel Multi-Modality Anatomical Image FusionMethod Based on Contrast and Structure Extraction
% F = fuseImage(I,scale)

%Inputs:
%I - a mulyi-modal anatomical image sequence

%scale - scale factor of dense SIFT, the default value is 16

%% load images from the folder that contain multi-modal image to be fused
%I=load_images(‘./Dataset\CT-MRI\Pair 1’);
I=load_images(‘./Dataset\MR-T1-MR-T2\Pair 1’);
%I=load_images(‘./Dataset\MR-Gad-MR-T1\Pair 1’);
% Show source input images
figure;
no_of_images = size(I,4);
for i = 1:no_of_images
subplot(2,1,i); imshow(I(:,:,:,i));
end
suptitle(‘Source Images’);

%%
F=fuseImage(I,16);
%% Output: F - the fused image

F=rgb2gray(F);
figure;
imshow(F);
function [ F ] = fuseImage(I,scale)

addpath(‘Pyramid_Decomposition’);
addpath(‘Guided_Filter’);
addpath(‘Dense_SIFT’);

tic
%%
[H, W, C, N]=size(I);
imgs=im2double(I);
IA=zeros(H,W,C,N);
for i=1:N
IA(:,:,:,i)=enhnc(imgs(:,:,:,i));

end
%%
imgs_gray=zeros(H,W,N);
for i=1:N
imgs_gray(:,:,i)=rgb2gray(IA(:,:,:,i));
end
%
% %dense sift calculation
dsifts=zeros(H,W,32,N, ‘single’);
for i=1:N
img=imgs_gray(:,:,i);
ext_img=img_extend(img,scale/2-1);
[dsifts(:,:,:,i)] = DenseSIFT(ext_img, scale, 1);

end
%%
%local contrast
contrast_map=zeros(H,W,N);
for i=1:N
contrast_map(:,:,i)=sum(dsifts(:,:,:,i),3);

end

%winner-take-all weighted average strategy for local contrast

[x, labels]=max(contrast_map,[],3);
clear x;
for i=1:N
mono=zeros(H,W);
mono(labels==i)=1;
contrast_map(:,:,i)=mono;

end

%% Structure
h = [1 -1];
structure_map=zeros(H,W,N);

for i=1:N
structure_map(:,:,i) = abs(conv2(imgs_gray(:,:,i),h,‘same’)) + abs(conv2(imgs_gray(:,:,i),h’,‘same’)); %EQ 13

end

%winner-take-all weighted average strategy for structure

[a, label]=max(structure_map,[],3);
clear x;
for i=1:N
monoo=zeros(H,W);
monoo(label==i)=1;
structure_map(:,:,i)=monoo;

end

%%
weight_map=structure_map.*contrast_map;

%weight map refinement using Guided Filter
for i=1:N

weight_map(:,:,i) = fastGF(weight_map(:,:,i),12,0.25,2.5);

end

% normalizing weight maps
%
weight_map = weight_map + 10^-25; %avoids division by zero
weight_map = weight_map./repmat(sum(weight_map,3),[1 1 N]);

%% Pyramid Decomposition

% create empty pyramid
pyr = gaussian_pyramid(zeros(H,W,3));
nlev = length(pyr);

% multiresolution blending
for i = 1:N
% construct pyramid from each input image

% blend
for b = 1:nlev
    w = repmat(pyrW{b},[1 1 3]);
    
    pyr{b} = pyr{b} + w .*pyrI{b};
end

end

% reconstruct
F = reconstruct_laplacian_pyramid(pyr);

toc

end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]朱俊林.浅析多模态医学图像的配准与融合技术[J].医疗卫生装备. 2005,(12)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值