【汉字识别】SVM汉字识别【含Matlab源码 830期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、汉字识别简介

汉字作为中华民族文化的信息载体,与人们的日常学习和工作密不可分。在网络信息交流中,需要输入大量的中文信息 ,重复、单调的传统键盘手工输入方式效率低下,已逐渐不能满足迅速发展的信息化时代。而传统的模板匹配法对于汉字的识别率不高,作者提出一种基于SVM的多特征手写汉字识别技术,可大幅提高汉字的识别率以及录入效率。

1 系统流程
首先对汉字图像进行灰度化、二值化、形态学处理、倾斜校正、字符分割和归一化、细化等图像预处理操作,再对字符进行特征提取,最后采用SVM算法构造分类器。系统识别流程如图1所示。

2 SVM原理
SVM(Support Vector Machines)是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,面对小样本问题,其能表现出良好的学习能力,并能做到与数据的维数无关 。
在这里插入图片描述
图1 汉字识别流程图
SVM方法是从线性可分情况下的最优分类超平面提出的,所谓最优分类超平面就是要求分类平面不但能将两类无错地分开,且要使分类平面两侧样本之间的间隔最大[4] 。过两类样本中离最优分类超平面最近的点,且平行于最优分类超平面的分类超平面上的训练样本称为支持向量[3] 。设样本集(xi,yi),xi∈Rd,yi∈{1,-1},i=1,…,n。在线性可分情况下,则可找到权向量w,使两类间隔最大,即‖w‖2最小,同时满足
在这里插入图片描述
其中,i=1,…,n,n表示分类样本的数目。
为求解上述优化问题,引入拉格朗日函数
在这里插入图片描述
式中,α为拉格朗日乘子,αi≥0。
通过拉格朗日函数L分别对w,b求偏导,并令偏导数值为0,结果代入超平面方程得到最优分类函数
在这里插入图片描述
汉字识别的分类对象是非线性不可分的。对于不可分问题,可通过引入非负松弛变量ξi加以解决,则约束条件变为
在这里插入图片描述
式中,C是惩罚因子,用来调节分类的准确率与泛化能力[5] 。拉格朗日乘子α的取值范围变为0≤αi≤C。对于低维空间的非线性可分问题,可通过引入核函数解决。原始数据的核函数变换为(xi·xj)→K(xi·xj),则非线性情况下,使用核函数之后对应的分类函数为
在这里插入图片描述
3 关键技术
3.1 质心特征的提取

质心特征是字符笔划分布的体现。将二值图像转化成点阵形式,黑色像素点用“1”表示,白色像素点用“0”表示。设c(i,j)表示汉字点阵,质心计算如下:水平质心
在这里插入图片描述
垂直质心
在这里插入图片描述
式中,i表示该点阵的行;j表示该点阵的行。

3.2 笔划特征的提取
汉字由横、竖、撇、捺4种基本笔划构成,笔划的构成体现了汉字的基本形态[7] 。下面对4种基本笔划进行提取。

(1)横、竖笔划的提取。横笔划中所有的像素点具有同一纵坐标,而竖笔划中所有的像素点具有同一横坐标[8] 。其特征明显,提取算法也基本相同。本文提出一种将细化后图像与原图像相结合的笔划提取方法,方法如下:1)对细化后图像进行自上而下、从左往右的水平扫描,若同一纵坐标上连续的黑点个数大于或等于2,则记下这些黑点的坐标;2)对原图像进行水平扫描,若这些黑点依然连续,则说明这些黑点构成一个横笔划,横笔划数量加1;3)重复第1、2步;4)当细化后图像水平扫描全部完成时,记下横笔划数。同理,对细化后图像进行自左向右而下、从上往下的竖直扫描,可得到竖笔划数;

(2)撇、捺笔划的提取。1)将细化后图像中的横、竖笔划删除,降低图像的复杂性;2)自上而下、从左往右的水平扫描细化后图像,如果第i行扫描到黑点,记下该黑点的纵坐标yi;3)跳出对第i行的扫描,依次扫描第i+1,i+2,i+3,…,20行,记下首次扫描到黑点的纵坐标y2,y3,y4,…,y21-i;4)比较y2,y3,y4,…,y21-i,若满足yj+1≤yj≤yj+1+1∪yj+2≤yj≤yj+2+2,j∈{1,2,3,…,20-i},则这些点构成一撇笔划,撇笔划数量+1,若满足yj≤yj+1≤yj+1∪yj≤yj+2≤yj+2,j∈{1,2,3,…,20-i},则这些点构成一捺笔划,捺笔划数量+1;5)删除已提取的撇、捺笔划,重复第2)~4)步;6)扫描结束后,记下撇、捺笔划数。

3.3 特征点的提取
汉字笔划特征点主要有端点、折点、歧点、交点[9] 。端点是笔划的起点或终点(不与其他笔划相接);折点是指笔划方向出现显著变化的点;歧点是三叉点,要求其中两个笔端的分支方向相同;交点是四叉点,且有两对等的对顶角。自左向右、自上而下的对二值图像进行扫描,统计各笔划特征点的个数。

3.4 构造分类器
分类器是整个字符识别系统的核心,作者采用SVM来构造分类器。SVM方法解决的是二分类问题,为使其能够应用于10个汉字的分类,需构造多值分类器。将采用一对一方法构造分类器。对于10个不同的汉字,一对一方法需要构造(C210即45)个分类器,分类结束后选取得票数最多的类别作为最终的识别结果。

⛄二、部分源代码

clc,clear,close
for i=1:5
imp=imread([‘.\字库’,num2str(i),‘.jpg’]);
create_database(imp,i);
end
load templet pattern;
aa=imread(‘example_1.png’);
[word cnum]=get_picture(aa);
%cc=imresize(aa,[120 90]);
for i=1:cnum
class=bayesBinaryTest(word{i});
Code(i)=pattern(class).name;
end

figure(3);
imshow(aa);
tt=title(['识别文字: ', Code(1:cnum)],‘Color’,‘b’);
function y = bayesBinary(sample)
%基于概率统计的贝叶斯分类器
%sample为要识别的图片的特征(1列100行的概率)
clc; %清屏
load templet pattern; %加载汉字特征
sum = 0; %初始化sum
prior = []; %先验概率
p = []; %各类别代表点
likelihood = []; %类条件概率
pwx = []; %贝叶斯概率
%%计算先验概率
for i=1:12
sum = sum+pattern(i).num; %特征总数
end
for i=1:12
prior(i) = pattern(i).num/sum; %出现每个汉字的可能性(先验概率)
end
%%计算类条件概率
for i=1:12 %12个汉字
for j=1:100 %100个模块
sum = 0;
for k=1:pattern(i).num %特征数
if(pattern(i).feature(j,k)>0.05) %概率大于阈值0.05则数量+1
sum = sum+1;
end
end
p(j,i) = (sum+1)/(pattern(i).num+2);%计算概率估计值即Pj(ωi),注意拉普拉斯平滑处理
end
end
for i=1:12
sum = 1;
for j=1:100
if(sample(j)>0.05)
sum = sump(j,i);%如果待测图片当前概率大于0.05认为特征值为1,直接乘Pj(ωi)
else
sum = sum
(1-p(j,i));%如果待测图片当前概率小于0.05认为特征值为0,乘(1-Pj(ωi))
end
end
likelihood(i) = sum; %将类条件概率赋值给likelihood
end
%%计算后验概率
sum = 0;
for i=1:12
sum = sum+prior(i)*likelihood(i); %求和即得P(X)
end
for i=1:12
pwx(i) = prior(i)*likelihood(i)/sum; %贝叶斯公式
end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]周庆曙,陈劲杰,纪鹏飞.基于SVM的多特征手写体汉字识别技术[J].电子科技. 2016,29(08)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值