【卫星轨道】龙格库算法卫星轨道六要素计算和优化【含Matlab源码 3948期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab物理应用仿真内容点击👇
Matlab物理应用(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、4阶龙格库塔法纵向平面内无控弹道仿真简介

1 4阶龙格库塔法
数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。

龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。该方法主要是在已知方程导数和初值信息,利用计算机仿真时应用,省去求解微分方程的复杂过程。

龙格—库塔法是一种在工程上应用广泛的高精度单步算法,其中包括著名的欧拉法,用于数值求解微分方程。 由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。 在各种龙格—库塔法当中有一个方法十分常用,该方法主要是在已知方程导数和初值信息,利用计算机仿真时应用,省去求解微分方程的复杂过程,该方法被称为“RK4”或者就是“龙格—库塔法”。

1.1 龙格-库塔法基本思想
在了解龙格—库塔法之前先回顾一下欧拉法。

1.2 龙格-库塔基本原理
龙格-库塔算法是对欧拉法的改进,都是使用过 ( xk , yk) 的直线来近似下一点的函数值 yk+1 ,区别在于斜率的选择。在欧拉法中,直接使用该点的切线 y′(xk) 当做直线的斜率,这样会造成对于 y(xk+1) 的求解一定存在误差,除非 y(x) 为直线时,结果才是准确的。基于上面的考虑,需要解决的便是如何提高 y(xk+1) 求解的精度;或者说在知道 ( xk , yk) 的情况下,如何确定直线斜率确保恰好经过待估测点 y(xk+1) 。答案是利用拉格朗日中值定理。

2 龙格库算法卫星轨道六要素计算和优化原理
龙格库算法(Runge-Kutta method)是一种常用的数值积分方法,用于求解常微分方程(ODEs)。它的原理是通过将微分方程转化为差分方程,然后通过迭代逼近连续解。

卫星轨道六要素计算是指根据卫星的初始状态和运动方程,计算出卫星在轨道上的位置和速度等六个要素,包括半长轴、偏心率、轨道倾角、升交点赤经、升交点赤纬和真近点角。

优化原理是指通过调整卫星轨道六要素,使得卫星的运动轨道满足特定的要求,例如最小化能量消耗、最大化通信覆盖范围等。优化可以通过调整卫星的初始状态或者应用控制策略来实现。

⛄二、部分源代码

clc;
close all;
clear all;

%初始变量定义
%---------------------------------%

A0 = pi/2; %发射方位角
B0 = 19.37/57.3; %发射点地理纬度
B1 = B0-0.192396sin(2B0); %发射点地心纬度
miu0 = B0-B1;
global we;
global R0;
global we_x;
global we_y;
global we_z;
global R0_x;
global R0_y;
global R0_z;
global Sm;
global A_phi;A_phi = 1;
global P;
global g_r;
global g_we;
global dt;
global r;
global a11;global a12;global a13;
global a21;global a22;global a23;
global a31;global a32;global a33;
global T1;global T2;global T3;
T1 = 61.6;T2 = 126.8;T3 = 186.4;
%---------------------------------程序角设计参数
global t1;global t2;global t3;
global t4;global t5;global t6;
t1 = 3;t2 = 90;t3 = 120;
t4 = T3;t5 = 155;t6 = 160;
global Phipr;
global c2;global c3;
c2 = 25pi/180;c3 = 20pi/180;
global Vlow;Vlow = 8.6;
global a;a = 0.08;
%---------------------------------------------%

we = 7.29210^-5; %地球自转角速度
R0 = 6371110;%地球半径
we_x = we
cos(B0)cos(A0);
we_y = we
sin(A0);
we_z = -wecos(B0)sin(A0);
R0_x = -R0
sin(miu0)cos(A0);
R0_y = R0
cos(miu0);
R0_z = R0
sin(miu0)sin(A0);
Sm = pi/4
1.67^2; %参考面积
dt = 0.1; %仿真步长
a11 = we_x2-we2;a12 = we_xwe_y;a13 = we_zwe_x;
a21 = a12;a22 = we_y2-we2;a23 = we_y*we_z;
a31 = a13;a32 = a23; a33 = we_z2-we2;

miu = 3.98600510^14; %地球引力系数
a_e = 6378145; %地球半长轴
J2 = 1.08263/1000; %摄动J2项
J = J2
3/2;
m1 = 35400-22680;
m2 = m1 - 7050;
m3 = m2 - 3650;
V(1) = 0; %速度及加速度定义
V_x(1) = 0; V_y(1) = 0;V_z(1) = 0;
theta(1) = pi/2;%弹道倾角定义
alpha(1) = 0; %攻角定义
beta(1) = 0; %侧滑角定义
sigma(1) = 0; %轨迹偏角定义
Phi(1) = pi/2; %偏航角定义
Sin_phi=0; %地心纬度定义
r = 6371110; %地心距定义
h(1) = 0; %高度定义
x(1) = 0;y(1) = 0;z(1) = 0;
m(1) = 35400;
rho(1) = 1.225;
i=1;
t(1) = 0;

while(t(i)<=T1)
if t(i)>t2&&t(i)<=t4
A_phi = 1;
else
A_phi = -1;
end;
P = 912000;
dm = 20800/61.6; %第一级燃料秒消耗量
r = sqrt((x(i)+R0_x)2+(y(i)+R0_y)2+(z(i)+R0_z)^2);
Sin_phi = ((x(i)+R0_x)we_x+(y(i)+R0_y)we_y+(z(i)+R0_z)we_z)/(rwe);
g_r = -miu
(1+J
(a_e/r)2*(1-5*Sin_phi2))/(r^2);
g_we = -2miuJ*(a_e/r)2*Sin_phi/(r2);
h(i+1) = abs(r-R0);
rho(i+1) = Rho(h(i+1));
V_x(i+1) = V_X(x(i),y(i),z(i),V_x(i),V_y(i),V_z(i),theta(i),Phi(i),rho(i),m(i));
V_y(i+1) = V_Y(x(i),y(i),z(i),V_x(i),V_y(i),V_z(i),theta(i),Phi(i),rho(i),m(i));
V_z(i+1) = V_Z(x(i),y(i),z(i),V_x(i),V_y(i),V_z(i),sigma(i),rho(i),m(i));
V(i+1) = sqrt(V_x(i+1)2+V_y(i+1)2+V_z(i+1)^2);
theta(i+1) = atan(V_y(i+1)/V_x(i+1));
x(i+1) = x(i)+(V_x(i+1)+V_x(i))dt/2;
y(i+1) = y(i)+(V_y(i+1)+V_y(i))dt/2;
z(i+1) = z(i)+(V_z(i+1)+V_z(i))dt/2;
sigma(i+1) = -asin(V_z(i+1)/V(i+1));
alpha(i+1) = A_phi
(Phi_pr(t(i),theta(i))-theta(i));
Phipr(i) = Phi_pr(t(i),theta(i));
Phi(i+1) = alpha(i+1)+theta(i+1);
m(i+1) = m(i)-dm
dt;
t(i+1) = t(i)+dt;
i
i = i+1;
end
m(i) = m(i)-1880;
while(t(i)<=T2)
if t(i)>t2&&t(i)<=t4
A_phi = 1;
else
A_phi = -1;
end;
P = 270000;
dm = 6250/65.2; %第二级燃料秒消耗量
r = sqrt((x(i)+R0_x)2+(y(i)+R0_y)2+(z(i)+R0_z)^2);
Sin_phi = ((x(i)+R0_x)we_x+(y(i)+R0_y)we_y+(z(i)+R0_z)we_z)/(rwe);
g_r = -miu
(1+J
(a_e/r)2*(1-5*Sin_phi2))/(r^2);
g_we = -2
miuJ(a_e/r)2*Sin_phi/(r2);
h(i+1) = abs(r-R0);
rho(i+1) = Rho(h(i+1));
V_x(i+1) = V_X(x(i),y(i),z(i),V_x(i),V_y(i),V_z(i),theta(i),Phi(i),rho(i+1),m(i));
V_y(i+1) = V_Y(x(i),y(i),z(i),V_x(i),V_y(i),V_z(i),theta(i),Phi(i),rho(i+1),m(i));
V_z(i+1) = V_Z(x(i),y(i),z(i),V_x(i),V_y(i),V_z(i),sigma(i),rho(i+1),m(i));
V(i+1) = sqrt(V_x(i+1)2+V_y(i+1)2+V_z(i+1)^2);
theta(i+1) = atan(V_y(i+1)/V_x(i+1));
x(i+1) = x(i)+(V_x(i+1)+V_x(i))*dt/2;
y(i+1) = y(i)+(V_y(i+1)+V_y(i))dt/2;
z(i+1) = z(i)+(V_z(i+1)+V_z(i))dt/2;
sigma(i+1) = -asin(V_z(i+1)/V(i+1));
alpha(i+1) = A_phi
(Phi_pr(t(i),theta(i))-theta(i));
Phipr(i) = Phi_pr(t(i),theta(i));
Phi(i+1) = alpha(i+1)+theta(i+1);
m(i+1) = m(i)-dm
dt;
t(i+1) = t(i)+dt;
i
i = i+1;
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 门云阁.MATLAB物理计算与可视化[M].清华大学出版社,2013.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值