【任务分配】蚁群算法无人机的航迹任务规划【含Matlab源码 7486期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信或扫描文章底部QQ二维码。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
Matlab路径规划(进阶版)
付费专栏Matlab路径规划(初级版)

⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!

⛄一、蚁群算法无人机的航迹任务规划

蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的启发式算法,它用于解决路径优化问题,比如无人机的航迹任务规划。这种算法的核心思想是通过人工模拟蚂蚁在寻找食物过程中释放信息素,来寻找最短路径的原理。

无人机航迹任务规划的原理和流程大致如下:

1 初始化:首先定义无人机的起始点和目标点,以及可能经过的中间点或者航迹点,同时初始化信息素矩阵。信息素是蚂蚁在路径上留下的标记,用以指导其他蚂蚁选择路径。

2 搜索循环:每个模拟的蚂蚁根据信息素浓度和启发式信息(如距离的倒数)来选择下一个航迹点。每只蚂蚁完成一次路径搜索后,会根据路径的长短来调整经过路径上的信息素浓度,即路径越短,信息素浓度增加得越多。

3 信息素更新:完成一轮搜索后,所有蚂蚁都会根据走过的路径长度对信息素进行更新,这包括信息素的蒸发和增加两个过程。蒸发是为了避免过早收敛到局部最优解,而信息素的增加是为了加强优秀解的路径。

4 循环迭代:重复上述搜索和信息素更新过程,直到达到预设的迭代次数或者解的质量不再有显著提高为止。

5 输出最优解:在所有迭代完成后,算法输出当前最优的航迹规划结果,即最短或者最优的路径。

蚁群算法在无人机航迹任务规划中的应用主要是为了找到一条耗费最少能源、时间最短或者风险最小的路径,以完成特定的飞行任务。

⛄二、部分源代码和运行步骤

1 部分代码
% 求解单机的最优解决方案
%
% X0,Y0: 出发点坐标
% Xend,Yend: 返回目的地坐标
%target: 需要被侦察目标的坐标
%threat: 威胁点坐标

%-----------------------------------------------------

clear all;
close all;
clc;
w1=0.4;
w2=0.6;
Best_Target=0;%最优路径探测到的目标数
Best_Cost=inf;%最优路径代价

%蚁群算法参数;
alpha=1; %信息启发因子,大趋向于选择其他蚂蚁经过的路径
beta=1.2; % %期望启发因子,大趋向于选择其他蚂蚁经过的路径
Q=10; %信息强度 信息素增加强度系数
Rho = 0.6; %信息素挥发系数

init_val=10;%激素浓度的初始值
NcMax=100; %最大迭代次数
ant_m=20;   %蚂蚁数量

load('TargetThreat_data.mat');
figure(1);hold on
generator(target,threat);
xlabel('x/km');
ylabel('y/km');

% title(‘目标与威胁分布图’);
title(‘Target and threat distribution’)
%以目标点作为城市,以代价作为距离,构建并初始化城市距离矩阵
city_n=size(target,1)+1; %加+1,是考虑出发点
Xend=80;
Yend=40;
X0=0;
Y0=0;
%------------------装载数据------------------
%设置无人机的初始位置,终止位置
C=[X0,Y0;target1;Xend,Yend];

for i=1:city_n
    for j=1:city_n
        if i~=j

% dis_table(i,j)=inf;
dis_table(i,j)= ((C(i,1)-C(j,1))2+(C(i,2)-C(j,2))2)^0.5;
else
dis_table(i,j)=eps;
end
end
end

Tau=init_val*ones(city_n,city_n);     %Tau为信息素矩阵
deta_tao = zeros(city_n);          %初始化增加的信息量 

%初始化禁忌表
Tabu=zeros(ant_m,city_n);  

R_best=zeros(NcMax,city_n); %各代最佳路线
L_best=inf.*ones(NcMax,1); %各代最佳路线的长度
L_ave=zeros(NcMax,1); %各代路线的平均长度

for nc=1:NcMax%迭代了第nc次
      
      %%第二步:将ant_m只蚂蚁放到city_n个城市上 ,蚂蚁初始位置为出发点
        for i=1:ant_m
              city=1;  %随机产生初始位置城市
              Tabu(i,1)=city;
        end
        
         %%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
         for j=2:city_n     %所在城市不计算
             
            for i=1:ant_m 
                visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
                J=zeros(1,(city_n-j+1));       %待访问的城市
                 P=J;                      %待访问城市的选择概率分布
                Jc=1;

                for k=1:city_n %计算哪些城市可访问
                    if length(find(visited==k))==0   %开始时置0
                        J(Jc)=k;
                        Jc=Jc+1;                         %访问的城市个数自加1
                    end
                end

                %下面计算待选城市的概率分布
                for k=1:length(J)
                    if(dis_table(visited(end),J(k))==inf)
                       %需要进行航路轨迹,临时设置为100                            
                        dis_table(visited(end),J(k))=100;                                                   
                    end
                    Eta=1/dis_table(visited(end),J(k));      
                    
                    P(k)=(Tau(visited(end),J(k))^alpha)*(Eta^beta);
                end

                P=P/(sum(P));
                %按概率原则选取下一个城市
                Pcum=cumsum(P);    % cumsum,元素累加即求和            
                Select=find(Pcum>=rand);  %赌轮式选择
                to_visit=J(Select(1));
                Tabu(i,j)=to_visit;
            end
         end       
         
          if nc>=2
                    Tabu(1,:)=R_best(nc-1,:);
          end
         
          %%第四步:记录本次迭代最佳路线
        L=zeros(ant_m,1);     %开始距离为0,ant_m*1的列向量
        for i=1:ant_m
            R=Tabu(i,:);
            cost=0;
            val=0;
            for j=1:(city_n-1)
                cost=cost+dis_table(R(j),R(j+1));    %原距离加上第j个城市到第j+1个城市的距离
                
            end
            cost=cost+((C(R(14),1)-80)^2+(C(R(14),2)-40)^2)^0.5;
            L(i)=cost;

%
end

        L_best(nc)=min(L);           %最佳距离取最小
        pos=find(L==L_best(nc));
        R_best(nc,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
        L_ave(nc)=mean(L);           %此轮迭代后的平均距离

        nc=nc+1  ;                    %迭代继续
        
         %%%%%%%%%%%%%%%5第五步:更新信息素%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        Delta_Tau=zeros(city_n,city_n);        %开始时信息素为n*n的0矩阵
        for i=1:ant_m
            for j=1:(city_n-1)
                Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
                %此次循环在路径(i,j)上的信息素增量
            end

            Delta_Tau(Tabu(i,city_n),Tabu(i,1))=Delta_Tau(Tabu(i,city_n),Tabu(i,1))+Q/L(i);
            %此次循环在整个路径上的信息素增量
        end
        
        Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素

        %%%%%%%%%%%%%%%%%%% 第六步:禁忌表清零%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        Tabu=zeros(ant_m,city_n);             %%直到最大迭代次数

end %for-nc

%%%%%%%%%%%% 第七步:输出结果 %%%%%%%%%%%%%%%%%%%%%%%%

Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
Shortest_Route=[R_best(Pos(1)+1,:),15] %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离

Solution=Shortest_Route;
Val=Shortest_Length;
Cost=Shortest_Length;

figure(2);%画任务分配结果图
generator(target,threat);
C=[X0,Y0;
target(:,1:2);
Xend,Yend];
str=sprintf(‘starting point’);
text(-2,3,str);
str=sprintf(‘final’);
text(78,36,str);
xlabel(‘x/km’);
ylabel(‘y/km’);
% title(‘任务分配结果图’);
title(‘Task allocation curve’)
DrawRoute(C,Shortest_Route) ;
grid on;
figure(3);%画代价收敛曲线图
plot(L_best);
% xlabel(‘迭代次数’);
xlabel(‘Iteration’);
ylabel(‘Cost’);
% ylabel(‘代价值’);
% title(‘代价收敛曲线图’);
title(‘Cost convergence curve’);
axis([0 100 200 300]);
grid on;

2 通用运行步骤
(1)直接运行main.m即可一键出图

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2019b

2 参考文献
[1]周东健,张兴国,马海波,李成浩,郭旭.基于栅格地图-蚁群算法的机器人最优路径规划[J].南通大学学报(自然科学版). 2013,12(04)
[2]田疆,李二超.用于无人机三维航迹规划改进连接型快速扩展随机树算法[J].航空工程进展. 2018,9(04)
[3]朱收涛.采用改进粒子群算法的无人机协同航迹规划[J].光电与控制.2012
[4]张航,高岳林.求解带容量约束车辆路径问题的改进蚁群算法[J].宝鸡文理学院学报(自然科学版). 2022,42(03)
[5]龚艺,冉金超,侯明明.基于遗传算法的多目标外卖路径规划[J].电子技术与软件工程. 2019,(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值