图的顶点与边间关系

对于无向图G=(V,{E}),如果边(v,v')∈E,则称顶点v和v'互为邻接点(Adjacent),即v和v'相邻接。边(v,v')依附(incident)于顶点v和v',或者说(v,v')与顶点v和v'相关联。顶点v的度(Degree)是和v相关联的边的数目,记为TD(v)。


对于有向图G=(V,{E}),如果弧<v,v'>∈E,则称顶点v邻接到顶点v',顶点v'邻接自顶点v。弧<v,v'>和顶点v,v'相关联。以顶点v为头的弧的数目称为v的入度(InDegree),记为ID(v);以v为尾的弧的数目称为v的出度(OutDegree),记为OD(v);顶点v的度为TD(v)=ID(v)+OD(v)。


无向图G=(V,{E})中从顶点v到顶点v'的路径(Path)是一个顶点序列(v=vi,0,vi,1,...,vi,m=v'),其中(vi,j-1,vi,j)∈E,1≤j≤m。

如果G是有向图,则路径也是有向的,顶点序列应满足<vi,j-1,vi,j>∈E,1≤j≤m。


树中根结点到任意结点的路径是唯一的,但是图中顶点与顶点之间的路径却是不唯一的。
路径的长度是路径上的边或弧的数目。


第一个顶点和最后一个顶点相同的路径称为回路或环(Cycle)。序列中顶点不重复出现的路径称为简单路径。除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路,称为简单回路或简单环。图中两个图的粗线都构成环,左侧的环因第一个顶点和最后一个顶点都是B,且C、D、A没有重复出现,因此是一个简单环。而右侧的环,由于顶点C的重复,它就不是简单环了。
 

简而言之,在图中,顶点(vertex)和边(edge)是两个基本的元素,它们之间存在着紧密的关系。

1. 顶点之间的关系:
   - 邻接顶点(adjacent vertex):如果两个顶点通过一条边直接连接,那么它们被称为邻接顶点。
   - 相邻顶点(adjacent vertex):与某个顶点直接相连的所有顶点称为其相邻顶点。

2. 边与顶点的关系:
   - 入度(in-degree):对于有向图,顶点的入度是指指向该顶点的边的数量。
   - 出度(out-degree):对于有向图,顶点的出度是指从该顶点指出的边的数量。
   - 度数(degree):对于无向图,顶点的度数是指与该顶点直接相连的边的数量。对于有向图,顶点的度数是指该顶点的入度和出度之和。

顶点和边的关系可以通过图的邻接矩阵或邻接表来表示和处理。

- 邻接矩阵:邻接矩阵是一个二维矩阵,其中的元素表示两个顶点之间是否存在一条边。如果图中的顶点i和顶点j之间存在一条边,则邻接矩阵中对应的元素a[i][j](或a[j][i])的值为1(或其他非零值),否则为0。邻接矩阵是一个方阵,它的行和列分别对应于图中的顶点。

- 邻接表:邻接表是一种链表的集合,每个顶点对应一个链表,链表中存储与该顶点直接相连的顶点。邻接表可以用于表示无向图和有向图。对于无向图,每条边都会在两个顶点的邻接表中存储一次;对于有向图,只会在起始顶点的邻接表中存储。

这两种表示方式都可以用来获取顶点和边之间的关系,进行图的遍历、搜索等操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值