前言
最近在尝试学习一些科技论文,由于主题可以任意选择,于是我挑选了一直都比较感兴趣的脑机接口(Brain Computer Interface)方向来学习,期间利用GPT辅助查找并学习了了一些综述论文,主题是对 Brain–computer interfaces for communication and control这篇文章一些拙劣的总结
什么是BCI
BCI是一门结合了神经科学、计算机科学、生物医学的多方面的学科,BCI是一种通信系统,它不通过大脑的正常输出通道(外周神经和肌肉)来传递信息
个人理解的一个狭义的实现流程应该如下
通过可穿戴或者嵌入式的传感器设备采集大脑的生物信号,同时还需要保证以下几种性质
1 实时性:因为脑电信号的跳变过程是很快的(当然也有不需要高实时性的BCI方案,后面我会提及),因此对庞大数据的采集和处理变得尤为重要,这就要引出当下火爆的神经网络来实现特征提取和分类
2 高保真性:由于脑电信号的不稳定性,些许轻微的误差都能导致最终分析结果的极大偏差,例如一个表示兴奋的电位被系统解析成了不高兴,这显然是不行的
3 安全性:大家都知道市面上有不少BCI设备是要侵入人体的,因此对材料的选型也很关键,同时硬件支持也必不可少,我最近关注到的光子芯片就能处理这些特定的矩阵运算问题
BCI的实现方式
经过一段时间的发展,早期市面上的BCI技术一般有以下几种类型
视觉诱发电位(VEP)
慢皮层电位(SCP)
P300诱发电位
mu和beta节律
皮层神经元动作电位
下面一一来介绍
视觉诱发电位
这种BCI通过测量视皮层上的VEP来确定凝视的方向进而判断被试者所观察的物体 举个例子:
我可以通过观察两个有一定区分度的物体来产生不同的两种脑电信号来告知周围的人我需要什么
这是一种依赖性BCI,因为它需要依靠肌肉来控制凝视的方向,可以用来操作文字处理程序或其他设备
慢皮层电位(SCP)
这种BCI通过训练用户控制SCP(Slow Cortical Potential)来实现对设备的控制,这就是通过记录头皮上的慢速电压变化
这种电压一般持续在0.5-10s之间
负SCP通常与运动和其他涉及皮层激活的功能相关,而正SCP通常与皮层激活减少相关。
简单地说,这是一种需要通过后天训练用户才能实现功能的技术,需要用户灵活地控制自身SCP进而控制计算机屏幕上的物体移动
P300诱发电位
这种BCI通过测量用户对特定刺激产生的P300电位来判断用户当前的状态(电位的振幅和波峰的位置可以提供有关刺激的信息,振幅反映刺激强度,波峰位置反映刺激类型)
当不经常或特别重要的听觉、视觉或躯体感觉刺激与经常或例行刺激混合在一起时,我们可以在大约300ms处检测到顶叶皮层上的一个正峰,用户可以通过这种方式来选择特定的字母或图标
mu和beta节律
这是一种由用户运动皮层处自发产生的自发脑电活动,与大脑中的运动控制相关区域有关。
这种方法相较SCP只需要较短的训练时间,但其对肌肉运动和其他干扰因素非常敏感,用户可以通过控制mu和beta节律的振幅来实现对设备的控制。
皮层神经元动作电位
在神经元兴奋时,由于离子通道的开放和关闭,使得细胞内外的电位发生变化,产生了电势差,是一种快速短暂且可重复的电信号
这种BCI通过侵入式的方法来测量皮层神经元的放电率,而使用者通过控制不同的放电率来实现对设备的控制
测量方法
一般来说,我们都是采用EEG(脑电图)来对电位进行测量,同时还有以下几种不同的方法
如脑磁图(MEG)、正电子发射断层扫描(PET)、功能性磁共振成像(fMRI)和光学成像。然而,MEG、PET、fMRI和光学成像仍然技术要求高且昂贵。此外,依赖于血流的PET、fMRI和光学成像具有较长的时间常数,因此不太适合快速通信。目前,只有EEG和相关方法可以在大多数环境中运行,并且需要相对简单和廉价的设备,提供了新的非肌肉通信和控制通道的可能性。
未来展望
BCI技术在过去几十年中取得了长足的发展。目前,研究人员正在开发各种类型的BCI系统,以帮助那些患有严重神经肌肉障碍的人进行通信和控制。这些BCI系统包括侵入性和非侵入性方法,可以使用多种电生理信号来实现用户意图的识别。
与文章中所描述的相比,当前的BCI技术已经取得了一些进展。例如,研究人员正在开发更先进的信号处理算法和机器学习方法来提高BCI系统的性能。此外,还在进行着旨在提高BCI系统可用性和用户体验的研究。
然而,尽管取得了巨大进展,但BCI技术仍然面临着许多挑战。例如,提高信息传输速率、减少用户训练时间、提高系统可靠性和稳定性等问题仍然需要解决。因此,BCI领域仍然是一个活跃的研究领域,未来仍有很大的发展潜力。
下一次我打算总结一下当前遇到的各种挑战以及利用高效的算法来解决问题的方式