pytorch自定义算子怎么用mindspore复现

问题描述:

【功能模块】

mindspore 1.6

【操作步骤&问题现象】

1、我想用msp复现脉冲网络(pytorch写的)的自定义算子,但是在官网上没有找到相应的教程,请问能提供一下如何转换的网页链接吗

2、我根据一篇csdn的博客尝试用msp写了一下,但测试后发现根本不对,希望能指正我的问题,感谢!

【截图信息】

pytorch版:

 mindspore版

 解答:

方法1:

MindSpore自定义算子开发教程:

https://mindspore.cn/docs/programming_guide/zh-CN/r1.6/custom_operator.html

以上述教程中的CPU算子开发为例,假如要自定义一个Transpose算子,那么需要在你的mindspore代码(r1.6)中加入以下内容:

① 注册算子原语,即定义算子的对外接口名称(Transpose),这个文件在https://gitee.com/mindspore/mindspore/blob/r1.6/mindspore/python/mindspore/ops/operations/array_ops.py 737行;

② 实现算子计算流程,https://gitee.com/mindspore/mindspore/blob/r1.6/mindspore/ccsrc/backend/kernel_compiler/cpu/transpose_cpu_kernel.cc;

③ 把实现的计算过程注册给算子原语(主要是这一句:MS_REG_CPU_KERNEL(Transpose, KernelAttr(), TransposeCPUFwdKernel);),https://gitee.com/mindspore/mindspore/blob/r1.6/mindspore/ccsrc/backend/kernel_compiler/cpu/transpose_cpu_kernel.h;

④ 定义算子的反向过程,https://gitee.com/mindspore/mindspore/blob/r1.6/mindspore/python/mindspore/ops/_grad/grad_array_ops.py 355行。

最后再编译一个新的whl包,就可以调用自定义的算子了。

方法2:Pynative模式下,可以自定义bprop()函数

https://mindspore.cn/docs/programming_guide/zh-CN/r1.6/debug_in_pynative_mode.html?highlight=bprop

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch中,我们可以使用C++或CUDA编写自定义算子,并将其发布为PyTorch的扩展,以便在PyTorch中使用。下面是发布自定义算子的一般步骤: 1. 编写C++或CUDA代码实现自定义算子。 2. 使用PyTorch提供的C++ API或CUDA API将算子封装为PyTorch扩展,生成动态链接库文件。可以使用setup.py或CMake来构建和安装扩展。 3. 在Python中导入扩展,并使用torch.ops.register_custom_op_symbolic()函数注册算子。 4. 在Python中使用自定义算子。 下面是一个简单的示例,演示了如何发布一个简单的自定义算子。 1. 编写C++代码实现自定义算子。假设我们要实现一个名为mymul的算子,它可以计算两个张量的乘积。以下是mymul的C++实现: ```c++ #include <torch/extension.h> torch::Tensor mymul(torch::Tensor x, torch::Tensor y) { return x * y; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("mymul", &mymul, "My multiply operation"); } ``` 2. 使用PyTorch提供的API将算子封装为扩展。可以使用setup.py或CMake来构建和安装扩展。以下是使用setup.py构建和安装扩展的示例: ```python from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup(name='mymul', ext_modules=[ CUDAExtension('mymul_cuda', [ 'mymul_cuda.cpp', 'mymul_cuda_kernel.cu', ]), CppExtension('mymul_cpp', ['mymul.cpp']), ], cmdclass={'build_ext': BuildExtension}) ``` 3. 在Python中导入扩展,并使用torch.ops.register_custom_op_symbolic()函数注册算子。以下是在Python中使用mymul的示例: ```python import torch from torch.utils.cpp_extension import load # 导入扩展 mymul_cpp = load('mymul_cpp', ['mymul.cpp']) # 注册算子 torch.ops.load_library(mymul_cpp.__file__) torch.ops.register_custom_op_symbolic('mymul_cpp::mymul', 2) # 创建输入张量 x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) # 使用自定义算子 z = torch.ops.mymul_cpp.mymul(x, y) print(z) ``` 在上面的示例中,我们首先导入了扩展,并使用torch.ops.load_library()函数加载它。然后,我们使用torch.ops.register_custom_op_symbolic()函数注册算子,指定算子的名称和输入参数的数量。最后,我们创建了两个输入张量x和y,并使用torch.ops.mymul_cpp.mymul()函数调用自定义算子,计算x和y的乘积。 注意,以上仅为一般步骤示例,实际上发布自定义算子需要编写更多的代码和配置文件,具体实现需要根据具体需求和环境进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值