由于MindSpore的各种遗留原因,在针对AI领域的很多术语有些歧义,简单记录一下,也让大家尽可能避坑。
术语 | 业界定义 | MindSpore定义 | 正确名词 |
---|---|---|---|
算子(ops) | 计算图中的节点,为一种计算函数,如Sigmoid或Conv2d。通常不区分粒度 | 同业界 | 算子 |
算子(nn) | 无 | 对算子的封装,在`mindspore.nn`下的所有接口 | 层(或nn层)。直接和神经网络层对应。一般框架对算子进行封装,方便AI研究者直接使用。无人称之为算子 |
数据加载算子 | 无 | 数据加载接口,为匹配pipeline设计(数据处理流图中的节点),也称之为算子。与Tensorflow的数据加载器类似,但TF从不采用算子这一名词 | DataLoader(或数据加载器)。 |
数据处理算子 | 通常指图像和音频传统处理方法,一般英文为Transform,不翻译为算子。 | MindSpore扩大了Transform的范围,试图将文本的预处理方法也加入其中。但是其实违背了NLPer的使用习惯。且算子一次过于泛化。 | 数据处理操作。沿用Operation的翻译,但是不采用算子一词。 |
精度 | 通常指机器学习的经典评价指标(准确率、精确率、召回率)中的精确率,英文为Precision。 | 泛指所有模型在指定任务上使用的评价指标最终得分,包括但不限于Accuracy、BLEU、ROC等等 | 性能(评价指标得分)。一般论文中以Performance一词指代评价指标得分,直译为性能。 |
性能 | 通常指模型在任务上的表现(评价指标得分) | 特指模型训练或推理速度。 | 英文描述中通常会直接以faster一词直接描述速度提升。有时会用Efficiency,即效率。通常直接用数值倍数表达。 |
把大家惯用的名词进行泛化或者更改了原意,本身就给AI领域的人一些困惑,同时也让学习的人增加隐形成本。这里进行记录和纠错,希望后续不要强行让大家使用第一列的名词。作为一个后来者,创词和违背既定习惯都是不可取的。
就写到这,后续有新词会持续更新。也欢迎大家纠错和指正。