【MindSpore易点通】如何根据profiler数据查看性能瓶颈

MindInsight主要功能介绍

MindInsight详细功能介绍请参考MindInsight性能调试

MindInsight主页面包括主要功能的概览信息:迭代轨迹、算子耗时统计、数据准备、时间线、调优助手。

迭代轨迹:展示了每个迭代各个阶段的性能信息:包括迭代间隙、前向反向、迭代拖尾以及每个all_reduce的信息。下方展示各个阶段的变化趋势。

算子耗时统计:通过类型、详细信息两个维度展示AICORE和AICPU算子耗时统计信息。

数据准备:性能分析分为两部分:1、迭代间隙数据处理分析;2、数据处理pipeline分析。

迭代间隙阶段:下图展示了迭代间隙阶段执行的操作的流程,通过分析队列中数据的情况判断出现性能问题的步骤。

数据处理阶段:分析用于已经定位到了该阶段的问题时,定位其中哪个算子存在问题,通过各个算子之间的队列的使用率,判断前面的算子能否提供足够的数据到队列中供下一个算子使用。

时间线:展示了算子在各个stream上的起止时刻,执行顺序、算子间隙、allreduce信息,从详细的粒度展示算子执行情况。

用户可参考下图,进行算子分析(常用的为MindData阶段分析和算子性能分析)。

案例问题分析

问题1:迭代间隙过长

通过迭代轨迹发现,迭代间隙过长:

问题分析

1.迭代间隙过长,通常因为数据处理过程导致,进入数据处理阶段分析。

2.主机队列几乎为空,判定是数据处理算子问题,进入数据处理pipeline查看具体问题。

3.当算子左边连接的Queue使用率都比较高,右边连接的Queue使用率比较低时,该算子可能是性能瓶颈:图中红框内数据可以看出,map操作过程中的队列使用率高,而右边连接的队列使用率较低,判断map中的数据处理过程存在性能瓶颈。

4.分析map中数据处理相关代码:发现数据处理进程数为默认值1,可以尝试调整数据处理进程数。

5.分析map中数据处理相关代码:发现存在c_transform和py_transform混用的问题,降低了训练性能。

措施1:调整数据处理进程数

调整数据处理进程数为8:

if do_train:
    cifar_ds = ds.Cifar10Dataset(dataset_dir=data_home, num_parallel_workers=8, shuffle=True, usage='train')
else:
    cifar_ds = ds.Cifar10Dataset(dataset_dir=data_home, num_parallel_workers=8, shuffle=False, usage='test')

cifar_ds = cifar_ds.map(operations=transform_label, num_parallel_workers=8, python_multiprocessing=True, input_columns="label")
cifar_ds = cifar_ds.map(operations=transform_data, num_parallel_workers=8, python_multiprocessing=True, python_multiprocessing=True, input_columns="image")
cifar_ds = cifar_ds.batch(batch_size, num_parallel_workers=8, drop_remainder=True)

修改后,重新训练,将训练后代码继续做profiling,发现迭代间隙明显缩短。

性能对比: 改进前:1100imgs/sec 改进后: 2150imgs/sec

措施2:避免c_transform和py_transform混用

数据处理过程中发现存在c_transform和py_transform混用的情况:

if do_train:
    # Transformation on train data
transform_data = py_trans.Compose([
            CV.RandomCrop((32, 32), (4, 4, 4, 4)),
            py_vision.ToPIL(),
            py_vision.RandomHorizontalFlip(),
            CV.Rescale(rescale, shift),
            CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
            CV.HWC2CHW()
            ])

else:
    # Transformation on validation data
    transform_data = py_trans.Compose([
            CV.Rescale(rescale, shift),
            CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
            CV.HWC2CHW()
            ])          

cifar_ds = cifar_ds.map(operations=transform_data, input_columns="image")

将数据处理过程中代码进行如下修改:

if do_train:
        # Transformation on train data
        transform_data = C.Compose([
            CV.RandomCrop((32, 32), (4, 4, 4, 4)),
            CV.RandomHorizontalFlip(),
            CV.Rescale(rescale, shift),
            CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
            CV.HWC2CHW()])

    else:
        # Transformation on validation data
        transform_data = C.Compose([
            CV.Rescale(rescale, shift),
            CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
            CV.HWC2CHW()])

cifar_ds = cifar_ds.map(operations=transform_data, input_columns="image")

修改后,重新训练,将训练后代码继续做profiling。迭代间隙有所缩短。

性能对比: 改进前:2150imgs/sec 改进后: 2250imgs/sec

经过这两步优化,迭代间隙由原来的77.5027ms减少到17.0623ms,有明显改善。

问题2:数据队列为空

继续分析优化后的Profiler数据,发现数据准备中的主机队列几乎为空:

问题分析

  1. 进入数据处理pipeline查看具体问题。

2.如红框所示,数据处理过程中的队列使用率高。对于最右侧的算子,如果其左边所有Queue的使用率都比较高,该算子可能是性能瓶颈。而此处最右侧算子为框架自动插入算子,因此判断数据下发存在性能瓶颈,应提升数据从Host传输到Device的速度。

措施3:采用数据下沉模式

采用数据下沉模式,实现整图下沉到Device执行,避免Host-Device频繁交互,减小了数据传输开销。

将Model.train接口中dataset_sink_mode值设为True,即可采用数据下沉模式。

model.train(..., dataset_sink_mode=True, sink_size=steps_per_epoch_train)

修改后,重新训练,将训练后代码继续做profiling,发现主机队列为空比例大大下降。

数据处理过程中的队列使用率明显降低。

性能对比: 改进前:2250imgs/sec 改进后: 2350imgs/sec

问题3:前向+反向时间较长

继续分析优化后的Profiler数据,由迭代轨迹看出,前反向时间相对较长,可能存在优化空间:

措施4:使用混合精度

使用混合精度可以加速训练,减少前反向时间。

修改高阶API代码中的Model接口,将amp_level设置成"O3",网络将采用FP16进行训练。

net = Model(net, loss, opt, metrics=metrics, amp_level="O3")

修改后,重新训练,将训练后代码继续做profiling。发现前反向时间明显减少。

性能对比: 改进前:2350imgs/sec 改进后: 3500imgs/sec

经过以上优化,训练性能得到明显提升。由初始的1100imgs/sec,改进到3500imgs/sec。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MindSpore中,Transformer模型是基于自注意力机制的深度学习模型,在NLP领域被广泛应用。MindSpore提供了相关的API和方法来构建和训练Transformer模型。 首先,在MindSpore中,可以使用`EmbeddingLookup`类来定义词嵌入层,该层负责将输入的单词转换为向量表示。这个类在`transformer_model.py`文件中进行定义。 接下来,为了进行网络的反向传播和训练,可以使用MindSpore的高级接口`MindSpore.Model`来定义网络反向和进行训练。在`transformer_model.py`文件中,可以看到网络的反向定义以及使用`MindSpore.Model`进行训练的示例代码。首先,通过`TransformerTrainOneStepCell`将网络和损失函数组合在一起,然后使用该组合后的网络进行训练。 最后,通过调用`model.train`方法,可以使用定义好的模型、数据集和优化器进行训练。需要指定训练的轮数、数据集、回调函数等参数来完成训练过程。 综上所述,在MindSpore中,可以使用相关的API和方法来构建和训练Transformer模型。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【MindSpore易点通】Transformer的注意力机制](https://blog.csdn.net/Kenji_Shinji/article/details/127958722)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [基于MindSpore的Transformer网络实现](https://blog.csdn.net/Kenji_Shinji/article/details/127314332)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值