【MindSpore易点通】Transformer的编码和解码

简介

在上一篇【MindSpore易点通】Transformer的注意力机制帖子中,跟大家分享了注意力机制的结构和原理。基于上篇内容,本次再和大家一起解锁下Transformer中的Encoder和Decoder以及Softmax部分。

Encoder结构

图中红框内就是Transformer的Encoder block结构,从下到上是由Multi-Head Attention-->Add & Norm-->Feed Forward-->Add & Norm组成的。因为Multi-Head Attention部分比较复杂,所以单独有分享:【MindSpore易点通】Transformer的注意力机制,了解了Multi-Head Attention的结构和计算过程,现在重点解析下Add & Norm和Feed Forward部分。

Add & Norm:Add & Norm层由有两个输入的路径,一个是经过了Multi-Head Attention处理,一个是直接输入。并且Add和Norm两

MindSpore中,Transformer模型是基于自注意力机制的深度学习模型,在NLP领域被广泛应用。MindSpore提供了相关的API方法来构建训练Transformer模型。 首先,在MindSpore中,可以使用`EmbeddingLookup`类来定义词嵌入层,该层负责将输入的单词转换为向量表示。这个类在`transformer_model.py`文件中进行定义。 接下来,为了进行网络的反向传播训练,可以使用MindSpore的高级接口`MindSpore.Model`来定义网络反向进行训练。在`transformer_model.py`文件中,可以看到网络的反向定义以及使用`MindSpore.Model`进行训练的示例代。首先,过`TransformerTrainOneStepCell`将网络损失函数组合在一起,然后使用该组合后的网络进行训练。 最后,过调用`model.train`方法,可以使用定义好的模型、数据集优化器进行训练。需要指定训练的轮数、数据集、回调函数等参数来完成训练过程。 综上所述,在MindSpore中,可以使用相关的API方法来构建训练Transformer模型。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【MindSporeTransformer的注意力机制](https://blog.csdn.net/Kenji_Shinji/article/details/127958722)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [基于MindSporeTransformer网络实现](https://blog.csdn.net/Kenji_Shinji/article/details/127314332)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值