一文读懂AI框架——这些关于AI框架的事,你知道多少?

图片

随着数智化进程的加快

多元化、复杂化的场景持续涌现

大模型俨然成为当下产业、甚至整个智能时代

的支柱力量

越来越多的企业开始构建AI大模型

以应对全新的业务需求和挑战

作为实现大模型的重要工具

AI框架也逐渐进入了发展繁荣期

开始收获越来越多的关注

在中国这片土壤上发展自己的AI框架

已是人工智能领域的焦点话题

图片

PART.1

AI框架:人工智能技术发展的基石

什么是AI框架?

图片

AI框架是AI算法模型设计、训练和验证的一套标准接口、特性库和工具包,集成了算法的封装、数据的调用以及计算资源的使用,同时面向开发者提供了开发界面和高效的执行平台,是现阶段AI算法开发的必备工具。

图片

AI框架的作用与价值

AI框架就类似Windows、安卓一般,是“AI领域的操作系统”,所有人工智能的算法及应用都要通过AI框架进行训练与部署。作为人工智能领域的“根技术”,AI框架在人工智能技术的发展中具有重要作用:

01

AI框架下接硬件、上承应用,是整个人工智能技术体系的核心,可实现AI算法工程化,提高人工智能学习效率、强化模型能力。

02

AI框架是智能应用快速落地的关键支撑者,是大规模并行计算的关键调度者,将主导智能经济时代各行各业细分场景。

03

AI框架将成为智能经济时代的操作系统,“AI框架+算力硬件”的组合在一定程度上决定了人工智能产业应用的主体技术路线。

图片

AI框架在日常生活中的应用

科技终要服务于社会,随着相关技术的不断发展完善,AI框架现已在日常生活中得到广泛应用。

01

在交通领域

通过AI框架开发的深度学习算法可以检测车辆违停、逆行等违章现象;大部分交通摄像头也已植入AI框架,可以精准识别车辆的车型、车牌号、车内人员等信息,甚至在发生事故时自动报警,辅助交管部门进行交通管理。

02

在金融行业

大量银行通过AI框架综合分析用户数据,并根据社交关系建立图神经网络模型,更好地判断用户的信用与还款能力,便于精准服务、降低贷款风险。

随着人工智能技术的持续进步,深度学习算法将拥有更加广阔的应用。作为其底层技术基石,AI框架也会进一步融入我们的日常生活,使能千行百业呈现智能时代新风貌。

PART.2

昇思MindSpore:中国AI框架首选

Google的TensorFlow,和Meta的PyTorch两款AI框架起步早、发展快,目前已经占据了业界的主导地位。但国内也有一些厂商奋起直追,呈现出双寡头并驱下的多元发展态势,也涌现出一批以昇思MindSpore为代表的优秀AI框架。

昇思MindSpore是什么?

图片

昇思MindSpore 是华为开源的新一代全场景AI框架,可以实现数据模型的训练-推理-全场景部署。大到地球系统模拟、自动驾驶,小到蛋白质结构预测,统统都可以通过昇思MindSpore实现。

图片

为何选择昇思MindSpore?

01

开发体验简单

可帮助开发者实现网络自动切分,只需串行表达就能实现并行训练,极大降低大模型训练门槛与成本,简化开发流程。

图片

02

充分发挥硬件潜能

特有图算融合网络性能优化技术,可充分发挥AI硬件算力,帮助开发者缩短训练时间,提升推理性能。

图片

03

全场景快速部署

具备端云协同能力,端边云接口统一、模型统一无需转换,可在云、边缘和手机上快速部署,实现更好的资源利用和隐私保护,让开发者专注于AI应用的创造。

图片

04

企业级可信能力

密态AI、对抗样本识别、差分隐私训练、系统资源强制隔离等多项技术加持,打造“模型‘偷’不走、隐私不泄露、模型抗攻击、OS级安全保护”四位一体的可信生态。

图片

中国AI框架首选昇思MindSpore

2022年,中国信息通信研究院发布《AI框架发展白皮书》,指出昇思MindSpore作为国内优质AI框架代表,在Gitee千万个开源项目中综合排名第一,已是国内开源社区最活跃的AI框架,为学术科研与产业应用提供了重要的技术支撑。

作为新兴的AI框架,昇思MindSpore在行业赋能方面已有斐然成绩。截至2023年6月,MindSpore 社区下载量超495万,社区核心贡献者超18000名,昇思MindSpore 服务企业达5500多家,广泛应用于工业制造、金融、能源电力、交通、医疗等行业,现已成为国内大模型首选AI框架。

当AI遍布于生活生产的每一处细节

昇思MindSpore这样的AI框架

将成为我们日常生活中不可缺少的一部分

期待昇思MindSpore为我们带来更多可能

### AI智能客服与智能会话 #### 定义与概念 AI智能客服指的是利用人工智能技术实现客户服务自动化的一种解决方案。这类系统可以理解并回应用户的查询,提供帮助和服务支持。其核心在于模拟人类对话过程中的交互行为,使得机器能够以自然的方式同客户交流。 #### 工作原理 智能客服的工作机制依赖于多种先进技术的支持: - **自然语言处理(NLP)**:这是指让计算机理解和生成人类使用的文字或语音的能力。通过对输入的信息进行语义分析、意图识别以及上下文管理等操作,智能客服得以解析用户的需求并向用户提供恰当的回答[^3]。 - **机器学习算法**:为了提高响应质量,智能客服还会采用监督式学习方法训练模型,使其可以从大量历史案例中学习最佳实践;同时也会运用强化学习不断优化自身的策略,在实际应用场景里做出更加合理的判断和建议[^1]。 - **知识库集成**:除了依靠内置逻辑外,很多先进的智能客服还连接着庞大的后台数据库作为支撑。当遇到复杂问题时,它们可以通过检索这些结构化信息源获取准确答案,并将其转化为易于被顾客接受的形式呈现出来。 #### 主要应用领域 随着技术进步,越来越多的企业开始部署AI驱动的聊天机器人来改善用户体验、降低运营成本并增强竞争力。以下是几个典型的应用场景: - **电子商务平台**:在线商店常常面临海量咨询请求的压力,而借助智能客服工具则可以在第一时间解答常见疑问,引导访客顺利完成购买流程; - **金融服务行业**:银行及其他金融机构也积极引入此类服务,用于账户查询、转账汇款指导等方面工作,既提高了效率又保障了安全性; - **电信运营商**:电话服务中心往往需要应对数以万计的日均来电量,此时拥有强大应变能力的人工智能助理无疑成为缓解人工坐席压力的有效手段之一。 ```python # 示例代码展示了一个简单的基于规则匹配的智能回复函数 def simple_chatbot_response(user_input): responses = { "你好": "您好!请问有什么可以帮助您的吗?", "再见": "感谢光临,祝您生活愉快!" } return responses.get(user_input.strip(), "抱歉,我不太明白您的意思") print(simple_chatbot_response("你好")) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值