使能AI智能体算法性能倍增!昇思多维混合并行等技术助力小艺语音交互、AI修图体验升级

3月20日华为发布阔折叠屏手机Pura X,发布会上首发了鸿蒙AI,全新小艺焕新登场,实现更拟人的自然语音交互。全新小艺基于昇思MindSpore,实现小艺语音合成算法推理性能提升30%,AI人像精修算法推理性能倍增,提升用户对话体验的实时性与修图效率。

# 01提升语音输出响应效率、生成性能

语音合成算法中,存在Decode算法模型多次迭代的场景,导致在不同次迭代过程中,需要拷贝上一次的模型输出作为下一次的模型输入,因此Device到Host的数据拷贝以及Host到Device的数据拷贝存在性能瓶颈。

小艺研发团队基于昇思MindSpore AI框架,通过使用模型运算结果Cache缓存机制,支持将模型输出缓存在Device侧,在下次迭代直接使用Device侧数据,有效解决语音类模型在迭代过程中Device侧和Host侧间的数据拷贝时延问题,语音输出首响效率提升20%。昇思MindSpore联合算法团队深度优化Decode模型结构,并构建使能Attention、RotaryMul等融合算子,语音生成性能综合提升10%。

image.png

# 02实现小艺语音双麦降噪算法的极低时延推理

告别传统机械问答,小艺凭借“打断不中断“的全双工技术,带来无缝、流畅的语音交互。全双工离不开声音的精准捕捉,双麦降噪业务算法团队实现HAL层极近调用MindSpore Lite超轻量端侧AI框架,降低传输时延和推理底噪,利用多音频流批次推理,高效发挥硬件算力,实现毫秒级超低时延降噪,让全双工对话轻松实现。

image.png

# 03多维混合并行、图结构融合优化实现AI修图效率倍增

AI人像精修算法中,为得到更高质量的人像精修效果,算法扩大图片分辨率,导致模型推理过程中Attention模块的序列长度增加。因此,业务模型推理过程中,Attention模块的计算量成倍增加。

昇思MindSpore通过构建TP/CP等多维混合并行策略,针对Conv算子,将算子输出特征图进行多份切分,实现多卡并行计算。针对Matmul类算子通过权重与特征图的切分,实现多卡并行,通过不同的并行策略实现AIGC类大模型出图效率倍增。

为进一步提升业务模型推理性能,针对AI生成式算法模型结构,昇思MindSpore通过构建自动图结构融合优化能力,将模型中Attention结构的小算子结合成昇腾硬件支持的PromptFlashAttention大算子、以及将算法中的GroupNorm算子与激活算子融合成GroupNormSilu大算子,出图效率提升20%。

image.png

# 04AI人像精修算法业务部署优化

AI人像精修算法业务复杂,在线部署过程中存在多个业务模型,导致业务部署加载时间长达小时级别。MindSpore联合业务深入优化部署方案,通过使能图编译缓存能力,业务在部署过程中直接使用编译缓存,部署加载时延从小时级优化到分钟级,极大方便业务服务化部署。

未来,昇思MindSpore将持续助力小艺优化AI智能体能力,提升AI落地应用体验,加速行业应用创新。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值