【从几何角度理解---线性代数Linear algebra】特征向量与特征值

文章介绍了线性代数中的特征值和特征向量概念,特别是在二维空间中的应用。特征向量是在线性变换中保持在同一空间的特殊向量,其拉伸或压缩的比例由特征值决定。非对称矩阵可以通过相似对角化求解幂运算,而特征向量构成的基可用于理解矩阵变换的本质。
摘要由CSDN通过智能技术生成

二维空间某个线性变换

  • 对于二维空间两个基向量 i ^ \hat i i^ j ^ \hat j j^,发生线性变换之后得到

  • i ^ = [ 3 0 ] \hat i = \begin{bmatrix} 3\\ 0\\ \end{bmatrix} i^=[30] j ^ = [ 1 2 ] \hat j = \begin{bmatrix} 1\\ 2\\ \end{bmatrix} j^=[12]

  • 用矩阵来表示 [ 3 1 0 2 ] \begin{bmatrix} 3 & 1\\ 0 & 2 \\ \end{bmatrix} [3012]

  • 若仅仅考虑这个向量张成的原空间(未发生线性变换)

  • 补充:张成(span):向量空间 V V V中的一组向量 ( V 1 , V 2 , . . . , V m ) (V_1,V_2,...,V_m) (V1,V2,...,Vm)的线性组合是如下形式的向量: a 1 v 1 + a 2 v 2 + . . . + a m v m a_1v_1 + a_2v_2 + ... + a_mv_m a1v1+a2v2+...+amvm
    ![[Pasted image 20230313161842.png]]

  • 若发生线性变换之后,大部分向量都离开了其张成的空间
    ![[Pasted image 20230313162018.png]]

  • 若发生线性变换之后,某些特殊向量的确留在它们张成的空间里
    ![[Pasted image 20230313163159.png]]

  • 意味着矩阵对它的作用仅仅是拉伸或者压缩而已,如同一个标量
    ![[Pasted image 20230313163126.png]]

在本例中

  • i ^ \hat i i^张成的空间为x轴, [ 3 0 ] \begin{bmatrix} 3\\ 0\\ \end{bmatrix} [30]意味着 i ^ \hat i i^变成了原来的3倍,仍留在在x轴上

  • 因此,在x轴上的任何其他向量都只是被拉伸为原来的3倍,它们也留在了 i ^ \hat i i^张成空间里

  • 还有一个略显隐蔽的向量 [ − 1 1 ] \begin{bmatrix} -1\\ 1\\ \end{bmatrix} [11],在变换汇总也留在自己张成的空间里,最终被拉伸为原来的2倍
    ![[Pasted image 20230313163847.png]]

  • 同上,线性性质暗示着一点,处在它所张成的对角线上的其他任何一个向量 ,也仅仅倍拉伸为原来的2倍

  • 对于上述矩阵,以上两向量就是拥有这一特殊性质它们张成的空间里)的向量
    ![[Pasted image 20230313164226.png]]

因此,上述这些特殊向量就被称为变换的“特征向量”

  • 特征值:即衡量特征向量在变换中拉伸或压缩比例的因子
    ![[Pasted image 20230313164417.png]]

对于特征值的正负问题

  • 特征值为负,意味着这个向量被反向,并压缩为原来的1/2
    ![[Pasted image 20230314165917.png]]

  • 发生线性变换之后,该向量依旧停留在它张成的直线上,并未发生旋转

3维向量(特征值的用途)

  • 例如,3维物体发生旋转,其中的旋转轴就为其特征向量,且为3维物体张成的空间里的向量,且特征值为1,因为旋转并不缩放任何一个向量,向量长度不变
    ![[Pasted image 20230314170500.png]]

![[Pasted image 20230314170616.png]]

特征向量在线性变换中的作用

  • 对于任一矩阵描述的线性变换

  • 可以通过将矩阵的列看作变换后的基向量来理解它
    ![[Pasted image 20230314171153.png]]

  • 但这较少依赖于特定坐标系

  • 最好理解线性变换在于,求出从矩阵变换之后的特征向量和特征值
    ![[Pasted image 20230314171311.png]]

特征向量的概念与计算

  • 特征向量概念
    A v ⃗ = λ v ⃗ A\vec v = \lambda \vec v Av =λv
    ![[Pasted image 20230314172522.png]]

  • 抽象理解:变换矩阵 A A A和特征向量 v ⃗ \vec v v 乘积,发生线性变换,等价于, 特征向量 v ⃗ \vec v v 拉伸或压缩了多少倍的特征值 λ \lambda λ
    ![[Pasted image 20230314180011.png]]

  • 实际上就是求解使得这个等式成立的向量 v ⃗ \vec v v 和数 λ \lambda λ

如何求解该等式

  • 首先将等号右侧重写为某个矩阵向量乘积( λ v ⃗ \lambda\vec v λv
  • 其中,矩阵的作用效果是将任一向量乘以 λ \lambda λ
  • 这个矩阵的列代表着变换后的基向量,每一个基向量仅仅与 λ \lambda λ 相乘
  • 因此该矩阵的对角元均为 λ \lambda λ,其余位置都是0, [ λ 0 0 0 λ 0 0 0 λ ] \begin{bmatrix} \lambda & 0 & 0\\ 0 & \lambda & 0\\ 0 & 0 & \lambda \end{bmatrix} λ000λ000λ
    ![[Pasted image 20230314180933.png]]

![[Pasted image 20230314181228.png]]

  • 且我们需要一个非零解的 v ⃗ \vec v v 特征向量
  • 因此,当且仅当矩阵(括号里)代表的变换将空间压缩到更低的维度时,即行列式为0,可以求出,非零解的特征向量
    d e t ( A − λ I ) = 0 det(A-\lambda I) = 0 det(AλI)=0
  • 补充:求矩阵的行列式的意义为:该矩阵在线性变换过程中,变换前后面积变化比例
  • 当且仅当 d e t ( A ) = 0 det(A) = 0 det(A)=0时,矩阵代表的变换将空间压缩到更低的维度

![[Pasted image 20230314182234.png]]

  • Squishification(空间压缩) 等价于 d e t ( A − λ I ) = 0 det(A - \lambda I) = 0 det(AλI)=0
    #举例
    ![[Pasted image 20230314224130.png]]

  • 考虑每个对角元都减去某个变量 λ \lambda λ
    ![[Pasted image 20230314224248.png]]

  • 矩阵本身发生改变,因此行列式也在改变

  • 找到一个 λ \lambda λ使得这个行列式为0
    ![[Pasted image 20230314224422.png]]

  • 使得 ( A − λ I ) v ⃗ = 0 ⃗ (A-\lambda I) \vec v = \vec 0 (AλI)v =0 I I I为单位阵
    #几何解释
    ![[Pasted image 20230314225323.png]]

  • 向量 v ⃗ \vec v v 在变换中停留在它张成的空间里

  • 在上述例子中,v对应的特征值为1,实际上保持不变
    ![[Pasted image 20230314225527.png]]

#公式推导
A v ⃗ = λ v ⃗ A\vec v = \lambda \vec v Av =λv
A v ⃗ − λ v ⃗ = 0 A\vec v - \lambda \vec v = 0 Av λv =0
( A − λ I ) v ⃗ = 0 ⃗ (A-\lambda I)\vec v = \vec 0 (AλI)v =0
d e t ( A − λ I ) = 0 det(A-\lambda I) = 0 det(AλI)=0
#举例
![[Pasted image 20230314225838.png]]

  • λ = 2 \lambda = 2 λ=2 带入矩阵之后,求解线性方程组
    [ 1 1 0 0 ] [ x y ] = [ 0 0 ] \begin{bmatrix} 1 & 1\\ 0 & 0\\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} [1010][xy]=[00]

  • 由于, r ( A ) = r ( [ A , B ] ) = 1 r(A) = r([A,B]) = 1 r(A)=r([A,B])=1 该方程组有唯一解,且解为 [ − 1 1 ] \begin{bmatrix} -1\\ 1\\ \end{bmatrix} [11] (特征向量)张成的对角线上
    ![[Pasted image 20230314231328.png]]

  • 相较于原始矩阵,相当于将特征向量拉伸为原来的2倍
    ![[Pasted image 20230314231449.png]]

二维变换不一定有特征向量

  • 若将原始矩阵 旋转90°
    ![[Pasted image 20230314231620.png]]

  • 一般来说,特征值出现复数的情况,一般对应于变换中的某种旋转
    ![[Pasted image 20230314231742.png]]

#剪切变换

  • i ^ \hat i i^不变,将j帽向右移动一个单位
    ![[Pasted image 20230314231930.png]]

![[Pasted image 20230314232852.png]]

  • 若将所有向量拉伸为2倍,
    ![[Pasted image 20230314232955.png]]

特征基

  • 如果我们的基向量恰好是特征向量,除了对角线以外其他元素均为0的矩阵称为对角矩阵,对角线元素进行拉伸或收缩
    ![[Pasted image 20230315102654.png]]

![[Pasted image 20230315103232.png]]

  • 矩阵的对角线是它们所属的特征值
    #性质
    ![[Pasted image 20230315104949.png]]

  • 相较于非对角矩阵
    ![[Pasted image 20230315105039.png]]

  • 对于非对角矩阵(非特殊矩阵)

  • 发生线性变换有许多的特征向量,多到能选出一个张成全空间的集合,即为满秩
    ![[Pasted image 20230315105334.png]]

  • 就能将这些特殊向量作为基
    ![[Pasted image 20230315105325.png]]

用基变换角度,求解非对称矩阵的幂运算(相似对角化)

#举例

  • 对于矩阵 [ 3 1 0 2 ] \begin{bmatrix} 3 &1\\ 0&2\\ \end{bmatrix} [3012],其特征向量为 [ 1 0 ] \begin{bmatrix} 1\\ 0\\ \end{bmatrix} [10] [ − 1 1 ] \begin{bmatrix} -1\\ 1\\ \end{bmatrix} [11]
  • 并将其特征向量作为基,作为一个矩阵的列,该矩阵就是基变换矩阵
  • 然后再右侧写下基变换矩阵,左侧学下基变换矩阵的逆,将原始的变换夹在两个矩阵中间
  • 得出相似矩阵概念,设A,B为两个n阶方阵,n阶可逆矩阵P
    P − 1 A P = B P^{-1}AP = B P1AP=B
  • 称A相似于B,记成A~B
    #几何解释
  • 新基向量所构成的坐标系的角度来看
  • 可逆矩阵P和矩阵P,仅仅把矩阵A的特征向量方向上进行拉伸和收缩,因此一定得出一个对角矩阵B
  • 矩阵A和B,具有相同的特征向量和特征值
    ![[Pasted image 20230315110422.png]]

![[Pasted image 20230315111243.png]]

  • 因此,要计算矩阵 [ 3 1 0 2 ] 100 \begin{bmatrix} 3 & 1\\ 0 & 2 \\ \end{bmatrix}^{100} [3012]100
  • 先转化到特征基,在那个坐标系中计算100次幂,然后再转化回标准坐标系

#剪切变换

  • 对于剪切变换,它的特征向量不够多,并不能张成全空间(不为满秩)
    ![[Pasted image 20230315111727.png]]

  • 因为只有一个特征向量 [ 1 0 ] \begin{bmatrix} 1\\ 0\\ \end{bmatrix} [10]
    #作业
    ![[Pasted image 20230315112013.png]]

引用:

B站up主:3Blue1Brown线性代数合集https://www.bilibili.com/video/BV1ys411472E?p=14&vd_source=c98261ef21552fd30ecdf82bd57320f1

About the Author David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. David Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has published more than 30 research articles on functional analysis and linear algebra. As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, David Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also a coauthor of several mathematics texts, including Introduction to Functional Analysis with Angus E. Taylor, Calculus and Its Applications, with L. J. Goldstein and D. I. Schneider, and Linear Algebra Gems–Assets for Undergraduate Mathematics, with D. Carlson, C. R. Johnson, and A. D. Porter. David Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar—Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America’s Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. David Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences. Steven R. Lay began his teaching career at Aurora University (Illinois) in 1971, after earning an M.A. and a Ph.D. in mathematics from the University of California at Los Angeles. His career in mathematics was interrupted for eight years while serving as a missionary in Japan. Upon his return to the States in 1998, he joined the mathematics faculty at Lee University (Tennessee) and has been there ever since. Since then he has supported his brother David in refining and expanding the scope of this popular linear algebra text, including writing most of Chapters 8 and 9. Steven is also the author of three college-level mathematics texts: Convex Sets and Their Applications, Analysis with an Introduction to Proof, and Principles of Algebra. In 1985, Steven received the Excellence in Teaching Award at Aurora University. He and David, and their father, Dr. L. Clark Lay, are all distinguished mathematicians, and in 1989 they jointly received the Outstanding Alumnus award from their alma mater, Aurora University. In 2006, Steven was honored to receive the Excellence in Scholarship Award at Lee University. He is a member of the American Mathematical Society, the Mathematics Association of America, and the Association of Christians in the Mathematical Sciences. Judi J. McDonald joins the authorship team after working closely with David on the fourth edition. She holds a B.Sc. in Mathematics from the University of Alberta, and an M.A. and Ph.D. from the University of Wisconsin. She is currently a professor at Washington State University. She has been an educator and research mathematician since the early 90s. She has more than 35 publications in linear algebra research journals. Several undergraduate and graduate students have written projects or theses on linear algebra under Judi’s supervision. She has also worked with the mathematics outreach project Math Central http://mathcentral.uregina.ca/ and continues to be passionate about mathematics education and outreach. Judi has received three teaching awards: two Inspiring Teaching awards at the University of Regina, and the Thomas Lutz College of Arts and Sciences Teaching Award at Washington State University. She has been an active member of the International Linear Algebra Society and the Association for Women in Mathematics throughout her career and has also been a member of the Canadian Mathematical Society, the American Mathematical Society, the Mathematical Association of America, and the Society for Industrial and Applied Mathematics.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值