几何角度看特征向量与特征值(视频见b站)

本文目的在于快速get核心点,视频请见:

【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibiliicon-default.png?t=M1L8https://www.bilibili.com/video/BV1ys411472E?p=14特征向量(eigenvector)、特征值(eigenvalue)与特征基(eigenbasis)

首先给定直角坐标系的基\begin{bmatrix} 1\\0 \end{bmatrix}\begin{bmatrix} 0\\1 \end{bmatrix},若将2个基分别变换到\begin{bmatrix} 3\\0 \end{bmatrix}\begin{bmatrix} 1\\2 \end{bmatrix},很明显变换矩阵为\begin{bmatrix} 3 &1 \\ 0 & 2 \end{bmatrix}

1.现在原直角坐标系给定一向量\begin{bmatrix} 3 \\ 2 \end{bmatrix}y=\frac{2}{3}x这条直线上,变换后为 \begin{bmatrix} 3 &1 \\ 0 & 2 \end{bmatrix}\begin{bmatrix} 3 \\ 2 \end{bmatrix}=\begin{bmatrix} 11\\4 \end{bmatrix},明显\begin{bmatrix} 11\\4 \end{bmatrix}并不在y=\frac{2}{3}x这条直线上。

2.但是找到了这样一个向量\begin{bmatrix} 1\\-1 \end{bmatrix}y=-x这条直线上,变换后为\begin{bmatrix} 3 &1 \\ 0 & 2 \end{bmatrix}\begin{bmatrix} 1 \\ -1 \end{bmatrix}=\begin{bmatrix} 2\\-2 \end{bmatrix},明显\begin{bmatrix} 2\\-2 \end{bmatrix}仍然y=-x在这条直线上。这意味着矩阵对\begin{bmatrix} 1\\-1 \end{bmatrix}的作用仅仅是放缩而已,就像一个标量一样。同样可以找到基向量\begin{bmatrix} 1\\0 \end{bmatrix}其实也是这样。由于线性性可知,y=-xy=0这两条直线上任意向量具有这样的性质。这些向量称为特征向量(eigenvector),缩放的因子称为特征值(eigenvalue)(特征值可为负)。

 特征向量的用途:举个例子,3D空间中,某一特征向量的特征值为1,整个空间进行线性变换旋转时,这个特征向量所在直线可以充当旋转轴。

【注】eigenvector与eigenvalue并不依赖于坐标系

有了以上的探索,我们可以有A\vec{v}=\lambda \vec{v},其中A为变换矩阵(transformation matrix),\vec{v},\lambda分别为特征向量(eigenvector)与特征值(eigenvalue) 。

等式左边是矩阵相乘,右边却是矩阵数乘,解决办法:A\vec{v}=\lambda I\vec{v}。经过处理可变成(A-\lambda I)\vec{v}=0\vec{v}为零向量等式自然成立,若为非零向量,则需要变换矩阵A-\lambda I\vec{v}压缩为零向量,即\begin{vmatrix} A-\lambda I \end{vmatrix}=0,求出\lambda后代入A\vec{v}=\lambda \vec{v}即可求特征向量\vec{v}

 【注1】当然可能不存在特征向量,比如旋转矩阵让向量均旋转90度偏离了原直线。此时特征值会有复数根,此处不予讨论。

【注2】同一特征值可能有不共线的特征向量。比如\begin{bmatrix} 1\\0 \end{bmatrix}\begin{bmatrix} 0\\1 \end{bmatrix}都放大两倍。

特征基(eigenbasis),此时基向量恰好是特征向量。比如\begin{bmatrix} -1 & 0\\ 0 & 2 \end{bmatrix}

\begin{bmatrix} -1 & 0\\ 0 & 2 \end{bmatrix}这样的矩阵叫对角矩阵(diagonal matrix),解读方法:所有基向量均为特征向量,矩阵的对角元是它们所属的特征值。

n\times n矩阵不一定能对角化,只有存在n个线性相关的特征向量(能张成与原空间同维度)才可以对角化。这n个线性不相关的特征向量组成的矩阵即为特征基(eigenbasis)。A^{-1}MA=K,M线性变换是在原空间的变换,K线性变换与M为同一变换,但K的变换是在另一个坐标系中。

【注】特征基组成的的幂运算十分简单。

比如\begin{bmatrix} -1 & 0\\ 0 & 2 \end{bmatrix}^{100}=\begin{bmatrix} (-1)^{100} & 0\\ 0 & 2^{100} \end{bmatrix}

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值