【线性代数公开课MIT Linear Algebra】 第二十四课 特征值与特征向量的应用——马尔科夫矩阵、傅里叶级数

本文介绍了马尔科夫矩阵的性质及其在稳态分析中的应用,讨论了特征值为1的重要性。同时,通过具体例子展示了如何求解马尔科夫矩阵的特征向量。接着,文章探讨了傅里叶级数,解释了如何利用正交基求解系数,并指出在傅里叶级数中正交性的概念及其积分验证。
摘要由CSDN通过智能技术生成

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~

马尔科夫矩阵Markov Matrix

马尔科夫矩阵Markov Matrix有两个性质:所有元素大于等于0,所有矩阵的列相加等于1。

这里性质导致一些有趣的特性:

  • 马尔科夫矩阵Markov Matrix 的幂依然是马尔科夫矩阵Markov Matrix
  • 马尔科夫矩阵Markov Matrix的其中一个特征值为1,其他所有的特征值的绝对值小于1

这二个特性导致了什么呢?看看我们之前关于矩阵的幂的公式:
这里写图片描述
不难发现随着k的增大,特征值的绝对值小于1的项最终都趋近于0,steady state取决于特征值为1的那一项。那么特征向量呢?
一个例子:
这里写图片描述
既然我们说其必定存在特征值为1,那么观察:
这里写图片描述
首先,很容易观察出,对于马尔科夫矩阵 A ,其减去单位矩阵 AI 的所有行的和为0,这说明了什么?说明 AI 的row vector线性相关, AI 为奇异矩阵,那么[1,1,1]在 AT 的null space中,我们想要的特征向量在 A 的null space中。
这里老师引入一个性质:
A 的特征值等于 AT 的特征值,理由是
det(AλI=0)
det((AλI)T=

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值