《数学之美》读书笔记(二)

《数学之美》读书记录

数学之美第二次阅读

一个学期的结束,考试完成,下起了小雨,吃过了早饭之后,打着伞走进了自习室,重拾此书。记得本学期开学之初初读时欣喜不已,竟放到了现在。

第4章谈谈分词。由于刚刚结束的对数据库的实训须要对SQL语句进行分词,看到本章,感到获益匪浅。词的颗粒度与层次,词表与语言模型,大致地勾勒出了分词器的框架。

第5章隐含马尔可夫模型。记得在好多地方都接触过,翻开此章,终于可以一探究竟了。复杂的问题总是可以通过简单的模型得到描述与解决,每个人都不得不由衷地感叹数学模型之妙。本章从通信模型开始,通过简单的模型马尔科夫假设和独立输出假设推出隐含马尔可夫模型,同时也揭开了自然语言处理、语音识别和机器翻译之间的模型关联性。其中几个算法也使我印象颇深,遗憾自己大学前面两年没有好好学习算法。一个训练算法(鲍姆-韦尔奇算法)、使用时的解码算法(维特比算法)信息的量度和作用。

第6章 本章对“信息”展开讲解。结合信息论,表述了信息熵,互信息,相对熵概念。正如本章开篇的几个问题,我们很难去说清楚信息到底有什么,但书中文字引领我度量信息,量化信息的作用。“信息的作用在消除不确定性,自然语言处理的大量问题就是寻找相关的息。”        

                                                                                                                                                                      2016.7.1

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值