一、什么是递归
简单地说,就是如果在函数中存在着调用函数本身的情况,这种现象就叫递归。
1、一个问题的解可以分解为几个子问题的解
2、这个问题与分解之后的子问题,除了数据规模不同,求解的思路完全相同
3、存在终止条件
以阶层函数为例,如下, 在 factorial 函数中存在着 factorial(n - 1) 的调用,所以此函数是递归函数:
public int factorial(int n) {
if (n < =1) {
return 1;
}
return n * factorial(n - 1)
}
二、实战演练
2.1、爬楼梯问题
解法一:递归解题思路
代码:
弊端:存在重复计算,时间复杂度高
优化以后:用hashMap来保存n个楼梯,对应的解法数m,先去hashMap取。取不到,再去计算!
解法二:循环解题思路,由下往上计算
代码:
2.2、斐波那契数列
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368……
特别指出:第0项是0,第1项是第一个1。
这个数列从第三项开始,每一项都等于前两项之和。
解法一:递归解题思路
代码:
解法二:循环解题思路