0.Abstract
作者提出一种深度学习的方法用于解决超分辨率问题(super-resolution, SR),具体的是,使用CNN来拟合低分辨率图像和高分辨率图像的映射,这是一种端到端的方法;而且传统的基于稀疏编码的SR方法(the sparse-coding-based method)也是能被看作CNN的;重要是的,这个CNN是个轻量级模型,能在实际应用快速的同时,保证达到图像重建的当前先进水平(state-of-art)。
1.Introduction
解决SR问题的大概都是基于例子的策略(example-based strategy),主要有两种思路:
a.利用同一图像的内部相似性;
b.从外部低分辨率和高分辨率示例图片对中学习映射函数;
基于稀疏编码的SR方法就是学习映射函数的一种代表方法,该方法包括以下几步:
a.从输入图片中密集地进行采样形成大量的重叠的patch,并且对这些patch进行预处理(例如减去均值、标准化);
b.使用一个低分辨率的字典(low-resolution dictionary)对patch进行编码;
c.使用一个高分辨率的字典(high-resolution dictionary)对b的输出进行编码,用来构建高分辨率的patch;
d.将重叠的patch进行聚合产生最终的输出;
作者提出的Super-Resolution Convolutional Networks(SRCN)具有以下几个优点:
a.结构简单但是准确率很高;
b.卷积核数和层数适中,在实际的及时应用中,即使使用CPU也能得到很快的相应速度;
2.Related Work
对于大部分的SR算法都是关注灰度图片或单通道的图片;至于彩色图片,这些传统的算法(例如)都是先将彩色图片(RGB)转换到不同的色彩空间(例如YCbCr、YUV),再在亮度通道上使用SR算法;
3.Convolutional Neural Networks for Super-Resolution
a.构想:
首先将输入图片使用双三次插值法(bicubic interpolation)放大到想要的大小,这是我们唯一需要做的预处理,并且我们把经过预处理后的图片记作Y。我们的目标是学习出一个映射F,使得F(Y)和真实高分辨率图片X尽可能的相似。如图1所示: