Problem Description
老 Jack 有一片农田,以往几年都是靠天吃饭的。但是今年老天格外的不开眼,大旱。所以老 Jack 决定用管道将他的所有相邻的农田全部都串联起来,这样他就可以从远处引水过来进行灌溉了。当老 Jack 买完所有铺设在每块农田内部的管道的时候,老 Jack 遇到了新的难题,因为每一块农田的地势高度都不同,所以要想将两块农田的管道链接,老 Jack 就需要额外再购进跟这两块农田高度差相等长度的管道。
现在给出老 Jack农田的数据,你需要告诉老 Jack 在保证所有农田全部可连通灌溉的情况下,最少还需要再购进多长的管道。另外,每块农田都是方形等大的,一块农田只能跟它上下左右四块相邻的农田相连通。
现在给出老 Jack农田的数据,你需要告诉老 Jack 在保证所有农田全部可连通灌溉的情况下,最少还需要再购进多长的管道。另外,每块农田都是方形等大的,一块农田只能跟它上下左右四块相邻的农田相连通。
Input
第一行输入一个数字
T(T≤10)
,代表输入的样例组数
输入包含若干组测试数据,处理到文件结束。每组测试数据占若干行,第一行两个正整数 N,M(1≤N,M≤1000) ,代表老 Jack 有N行*M列个农田。接下来 N 行,每行 M 个数字,代表每块农田的高度,农田的高度不会超过100。数字之间用空格分隔。
输入包含若干组测试数据,处理到文件结束。每组测试数据占若干行,第一行两个正整数 N,M(1≤N,M≤1000) ,代表老 Jack 有N行*M列个农田。接下来 N 行,每行 M 个数字,代表每块农田的高度,农田的高度不会超过100。数字之间用空格分隔。
Output
对于每组测试数据输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出 1 个正整数,代表老 Jack 额外最少购进管道的长度。
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出 1 个正整数,代表老 Jack 额外最少购进管道的长度。
Sample Input
2 4 3 9 12 4 7 8 56 32 32 43 21 12 12 2 3 34 56 56 12 23 4
Sample Output
Case #1: 82 Case #2: 74这道题类似于最短路径 只不过需要我们自己来建边 并且给边赋值我把每块地编号1-n 相邻的两块地建立一条边 边权为高度之差得绝对值 然后就是从边权最小的开始连接#include<cstdio> #include<cstring> #include<cmath> #include<queue> #include<algorithm> using namespace std; struct node { int x,y,val; }s[2000001];//存边 int vis[1001][1001]; int h[1001][1001]; bool cmp(node a,node b) { return a.val <b.val ; } int pre[1000001]; int find(int x)//这里不压缩路径会超时 { int r=x; while(r!=pre[r]) { r=pre[r]; } int i=x,j; while(i!=r) { j=pre[i]; pre[i]=r; i=j; } return r; } int main() { int t,n,m; int f=0; scanf("%d",&t); while(t--) { f++; memset(h,0,sizeof(h)); scanf("%d%d",&n,&m); int oq=1; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { scanf("%d",&h[i][j]); vis[i][j]=oq;//给每块地编号 pre[oq]=oq; oq++; } } int cnt=0; for(int i=0;i<n;i++)//左右相邻的地建边 { for(int j=0;j<m-1;j++) { int k=j+1; s[cnt].x =vis[i][j]; s[cnt].y =vis[i][k]; s[cnt].val =abs(h[i][j]-h[i][k]); cnt++; } } for(int j=0;j<m;j++)//上下相邻的地建边 { for(int i=0;i<n-1;i++) { int k=i+1; s[cnt].x =vis[i][j]; s[cnt].y =vis[k][j]; s[cnt].val =abs(h[i][j]-h[k][j]); cnt++; } } sort(s,s+cnt,cmp);//排序 int ans=0; for(int i=0;i<cnt;i++)//连接 { int fx=find(s[i].x); int fy=find(s[i].y); if(fx!=fy) { pre[fx]=fy; ans+=s[i].val; } } printf("Case #%d:\n%d\n",f,ans); } return 0; }