Windows环境下安装CUDA和cuDNN并且利用VS构建samples避坑教程

本文详细介绍了在Windows系统中如何安装CUDA和cuDNN,以及如何解决在Visual Studio构建CUDA samples时遇到的问题,如CUDA 11.3.props文件缺失。通过验证GPU支持,下载安装CUDA工具包,再到安装cuDNN,最终成功运行样例,为深度学习开发做好准备。
摘要由CSDN通过智能技术生成

根据官网教程指导安装CUDA和cuDNN,并在Visual Studio构建附带样例,避免官网教程中可能存在的坑,如通过Visual Studio生成样例解决方案时因找不到CUDA 11.3.props文件而失败的情况。

CUDA Tool Kit 的下载和安装

在运行适当版本的 Windows 的系统上设置 CUDA 开发工具包括几个简单的步骤:

  • 验证系统具有支持 CUDA 的 GPU。
  • 下载和安装NVIDIA CUDA 工具包。
  • 测试安装的软件是否正确运行并与硬件通信。

下面我们结合官网教程一步一步实现。

验证系统具有支持 CUDA 的 GPU

首先我们需要确认自己的电脑有英伟达的硬件支持,不然下面都白忙活了。在“此电脑”上右键单击,选择“管理”。在打开的“计算机管理”界面选择“设备管理器”->“显示适配器”
验证您是否拥有支持 CUDA 的 GPU
另外,可以打开“NVIDIA控制面板”,选择“帮助”菜单->“系统信息”->“组件”,能看到更多信息,例如下图所示,能看到支持CUDA 11.3。
CUDA版本查询

下载和安装NVIDIA CUDA 工具包

首先进入

对于一款具体的如NVIDIA GeForce RTX 4050显卡来说,由于CUDAcuDNN都是NVIDIA针对其GPU加速计算平台CUDA Toolkit的一部分,安装流程一般如下: 1. **检查兼容性**:首先确认你的显卡是否支持CUDA。RTX 4050属于RTX 30系列,理论上应该可以支持CUDA,但建议访问NVIDIA官网或查阅最新的驱动文档确认。 2. **下载CUDA Toolkit**:访问NVIDIA Developer网站(https://developer.nvidia.com/cuda-downloads),选择适合你系统的CUDA版本(通常是基于你的操作系统,如Windows、Ubuntu等)。注意选择针对支持的GPU系列的版本。 3. **安装CUDA**:运行安装程序,按照向导步骤进行安装。可能需要重启电脑以完成一些设置。 4. **安装cuDNN**:cuDNN深度学习优化库,通常包含在CUDA Toolkit中。如果你需要额外安装,可以在NVIDIA cuDNN官网(https://developer.nvidia.com/cudnn)上找到对应版本的下载链接,然后按照官方指导进行安装。 5. **添加环境变量**:为了能够在Python或其他语言中使用cuDNN,你需要配置环境变量。这通常涉及编辑系统路径或特定脚本文件,确保cuDNN库能找到。 6. **验证安装**:安装完成后,你可以通过CUDA samples或简单的测试脚本来验证CUDAcuDNN是否已成功安装并能正常工作。 **相关问题--:** 1. RTX 4050支持哪些CUDA版本? 2. 如何检查我的显卡是否支持cuDNN? 3. 安装过程中遇到错误如何解决?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值