BestCoder #80 - 1002 快速乘法取模

题目链接: BestCoder #80 - 1002 Segment

刚开始特别迷茫,后来发现x+y=q,而且y=(q-i)/i*x,化简一下就是(x+y)=q/i。那么根据题目的描述,q是质数,所以q/i而言,要么就是i=1,要么就是i=q,而这两者都恰好在x+y=q上,所以这些线段都是没有什么影响的。

代码: View Source On GitHub


学到了新的东西: 快速乘法取模

连接: 快速乘法/幂 算法详解

代码如下:


long long q_mul( long long a, long long b, long long mod ) //快速计算 (a*b) % mod
{
    long long ans = 0;  // 初始化
    while(b)                //根据b的每一位看加不加当前a
    {
        if(b & 1)           //如果当前位为1
        {
            b--;
            ans =(ans+ a)%mod;   //ans+=a
        }
        b /= 2;                         //b向前移位
        a = (a + a) % mod;          //更新a

    }
    return ans;
}



我在GitHub上建立了一个仓库,用于存放已经AC的题目的源代码。如果各位有未收录的题目或者有更好的解法,欢迎fork仓库+PR~ 让我们共同创建一个AC代码集中仓库,造福ACM Beginner ~

仓库地址: OJ-Problems-Source On GitHub


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值