NOIP 2006 普及组 开心的金明 0-1背包一维优化(模板)

版权声明:本文为博主原创文章,转载前请大喊一声“喵——” https://blog.csdn.net/Kiritow/article/details/51490233

题目:

描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N 元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N 元。于是,他把每件物品规定了一个重要度,分为5 等:用整数1~5 表示,第5 等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过N 元(可以等于N 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。设第j 件物品的价格为v[j],重要度为w[j],共选中了k 件物品,编号依次为j1...jk,则所求的总和为:v[j1]*w[j1]+..+v[jk]*w[jk]请你帮助金明设计一个满足要求的购物单.

格式

输入格式

输入的第1 行,为两个正整数,用一个空格隔开:
N m
(其中N(<30000)表示总钱数,m(<25)为希望购买物品的个数。)
从第2 行到第m+1 行,第j 行给出了编号为j1
的物品的基本数据,每行有2 个非负整数
v p
(其中v 表示该物品的价格(v≤10000),p 表示该物品的重要度(1~5))

输出格式

输出只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的
最大值(<100000000)

样例1

样例输入1

1000 5
800 2
400 5
300 5
400 3
200 2

样例输出1

3900
非常简单,就是0-1背包的题目。金钱数量比较大所以考虑一维优化。

AC代码 在GitHub上查看代码

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;

/// 0-1背包问题(一维数组空间优化)

namespace Package1_SpaceOptimized
{
    const int MAXM = 30000 + 5;
    const int MAXN = 25 + 5;
    int ldp[MAXM];
    int w[MAXN];
    int v[MAXN];
    int N,M;
    void solve()
    {
        for(int i=1;i<=N;i++)
        {
            for(int j=M;j>=1;j--)///从M到1逆序循环
            {
                int a=ldp[j];
                int b=-1;
                if(j-w[i]>=0) b=ldp[j-w[i]]+v[i];
                ldp[j]=max(a,b);
            }
        }
        printf("%d\n",ldp[M]);
    }
    int main()
    {
        scanf("%d %d",&M,&N);
        for(int i=1;i<=N;i++)
        {
            scanf("%d %d",&w[i],&v[i]);
            v[i]=w[i]*v[i];
        }
        solve();
        return 0;
    }
}

int main()
{
    return Package1_SpaceOptimized::main();
}


展开阅读全文

没有更多推荐了,返回首页