实验目的
(1) 通过实验进一步理解RLC串联电路的频率特性;
(2) 了解串联谐振的现象,研究电路参数对串联谐振电路的影响;
(3) 理解串联谐振电路的选频特性及应用,掌握谐振曲线的测量方法;
(4) 学会使用仿真实验平台查看电压和电流在不同频率表下的波形,并且根据波形找到发生串联谐振时的频率。
(5) 学会通过仿真实验平台来分析不同频率、不同阻值情况下电压和电流波形的变化情况。
实验原理
(1)RLC串联谐振原理:在RLC串联电路中,当外加角频率为ω的正弦电压U时,电路中的电流为I,即I=U/(R^‘+j(ωL-1/ωC) ),式中,R^’=R+r,r为线圈电阻。当ωL=1/ωC时,电路发生串联谐振,谐振频率为f_0=1/(2π√LC), 该式即为产生串联谐振顶点条件。可见,改变L、C或电源频率f都可以实现谐振。本实验通过改变外加电压的频率来使电路达到谐振。
(2)原理图如下:
实验过程与原始数据
- 验证串联谐振电路
(1)实验过程:在画布中插入一个电阻R、一个电感L、一个电容C、一个电源U,再将电阻赋为51Ω、电感赋为10mH、电容赋为0.022μF、电源赋为交流250mV(幅值)。然后设置仿真频率范围,再查看电阻的电压波形和电流波形在不同频率下的变化情况,找到电压和电流同相位时的所对应的频率,即为该电路的串联谐振频率。之后将电源的频率调整为发生串联谐振时的频率,重新运行电路,测出电压和电流等相关参数,并计算品质因数。
(2)原始数据(U = 250mV(幅值)):
- 测量串联谐振曲线
(1) 实验过程:先将电阻的阻值赋为100Ω,同时将电源的频率设定为某一特定值,然后运行电路图,测量电压和电流等相关参数,并计算品质因数。重复上述过程。之后再讲电阻的阻值赋为510Ω,再重复上述过程。
(2) 原始数据:
- 用示波器观察RLC串联谐振电路的波形
(1) 实验过程:将电源的频率赋为串联谐振频率,然后运行电路图,查看并记录电压和电流的波形。之后更换电源的频率,重复上述过程。
(2) 原始数据:串联谐振频率为10.7kHz,低频为5kHz,高频为20kHz。
实验结果及分析
- 验证串联谐振电路
(1) 实验结果:
(2) 分析:当电路发生串联谐振时,电容和电感的电压近似相等,此时电路中的电流达到最大值。 - 测量串联谐振曲线
(1) 实验结果:
(2) 分析:
①无论是电阻的阻值如何变化,电压和电流的波形在不同频率下的变化情况相同,即串联谐振频率的大小与电阻无关,且在发生串联谐振时,电压和电流取得最大值。
②电路的品质因数随着电阻的增大而减小。
③Q值越大,通用串联谐振曲线的形状越尖锐,电路的选择性越好。
- 用示波器观察RLC串联谐振电路的波形
实验结果:
思考题
(1)①电压和电流同相位;
②电容和电感的电压大小相等;
③电路中电压和电流达到最大值。
实验体会与建议
(1) 体会:通过这次实验,我学会了如何使用仿真实验平台来查看电压和电流在不同频率下的波形并根据波形找到串联谐振频率,还掌握了通过仿真实验平台来分析不同频率、不通过阻值情况下电压和电流的波形变化情况。而且,这次实验使我对串联谐振的原理以及发生串联谐振时电路具有的特征的理解更加深刻,并熟练掌握了判断电路发生了串联谐振的方法。在此之外,我对串联谐振电路的相关参数的理论计算也变得更加熟练。
(2) 建议:课前尽可能明确课程目标及实验要求,以防课上花费较长时间在修改和统一实验操作上。
敲黑板!!!
电子与电工技术实验——叠加定理与戴维南定理:
https://blog.csdn.net/KissMoon_/article/details/117440411
电子与电工技术实验——RLC串联谐振电路:https://blog.csdn.net/KissMoon_/article/details/117454188
电子与电工技术实验——单管交流电压放大电路:
https://blog.csdn.net/KissMoon_/article/details/117454808
电子与电工技术实验——集成运算放大器的应用:
https://blog.csdn.net/KissMoon_/article/details/117455133
叠加定理与戴维南定理/RLC串联谐振电路/单管交流电压放大电路/集成放大器的应用完整实验报告
https://download.csdn.net/download/KissMoon_/19322896