Logistic回归模型及损失函数和成本函数

Logistic回归模型、损失函数和成本函数

logistic模型

logistic模型: y ^ = σ ( w T x + b ) \hat{y} = σ(w^Tx+b) y^=σ(wTx+b) σ ( z ) = 1 1 + e − z σ(z)=\frac{1}{1+e^{-z}} σ(z)=1+ez1,其中 w T x + b = z w^Tx+b=z wTx+b=z,所以 0 ≤ y ^ ≤ 1 0≤\hat{y}≤1 0y^1

损失函数

损失函数是在单个训练样本中定义的 ,它是衡量单个训练样本上的表现;
损失函数也叫误差函数,可以用来衡量算法的运行情况,损失函数越小,算法越精确;

如果使用 L ( y ^ , y ) = 1 2 ( y ^ − y ) 2 L(\hat{y},y)=\frac{1}{2}{(\hat{y}-y)}^2 L(y^,y)=21(y^y)2,那么梯度下降法将不能使用;

因此使用 L ( y ^ , y ) = − ( y l o g y ^ + ( 1 − y ) l o g ( 1 − y ^ ) ) L(\hat{y},y)=-(ylog\hat{y}+(1-y)log(1-\hat{y})) L(y^,y)=(ylogy^+(1y)log(1y^)),其中0< y ^ \hat{y} y^<1;

如果训练样本 y = 1 y=1 y=1:那么 L ( y ^ , y ) = − l o g y ^ L(\hat{y},y)=-log\hat{y} L(y^,y)=logy^,要使 L ( y ^ , y ) L(\hat{y},y) L(y^,y)足够小,就要 l o g y ^ log\hat{y} logy^足够大,就要 y ^ \hat{y} y^足够大(但是 y ^ \hat{y} y^永远<1,即无限接近1);

如果训练样本 y = 0 y=0 y=0:那么 L ( y ^ , y ) = − l o g ( 1 − y ^ ) L(\hat{y},y)=-log(1-\hat{y}) L(y^,y)=log(1y^),要使 L ( y ^ , y ) L(\hat{y},y) L(y^,y)足够小,就要 l o g ( 1 − y ^ ) log(1-\hat{y}) log(1y^)足够大,就要 y ^ \hat{y} y^足够小(但是 y ^ \hat{y} y^永远>0,即无限接近0);

总结:如果 y = 1 y=1 y=1,尽可能让 y ^ \hat{y} y^接近1;如果 y = 0 y=0 y=0,尽可能让 y ^ \hat{y} y^接近0。

成本函数

w和b的函数,衡量全体训练样本上参数w和b的效果的表现(成本函数越小越好);

1 m \frac{1}{m} m1的损失函数之和的平均值

在这里插入图片描述

梯度下降法

来训练或学习训练集的参数w和b;

  • 损失函数就是将训练出来的 y ^ ( i ) \hat{y}^{(i)} y^(i)和真值 y ( i ) y^{(i)} y(i)进行比较;
  • 成本函数衡量了参数 w w w b b b在训练集上的效果,要训练出合适的 w w w b b b使得成本函数最小。
    在这里插入图片描述
    在这里插入图片描述

$J(w,b)是如上的凸函数

下图是用二维来解释梯度下降法的实现原理


①是斜率,通常只有一个变量用 d d d表示,两个变量以上用 ∂ ∂ 表示,通常④表达是对的,但是③易理解,且通常使用②变量符号来代表①;

左上角的函数图解读:若 w w w在最低点的右边,则成本函数较大,通过减去 σ ∗ d ( w , b ) σ*d(w,b) σd(w,b)(此时 d ( w , b ) d(w,b) d(w,b)为正),不断迭代使得 w w w减小( b b b同理)最后找到最小的成本函数

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值