12、PyTorch教程---卷积神经网络(Convolutional Neural Network,CNN)

21 篇文章 1 订阅 ¥19.90 ¥99.00
本文介绍了卷积神经网络(CNN)的基础知识,包括局部响应字段、卷积和池化的概念,并展示了如何使用PyTorch构建CNN的步骤,帮助读者理解并实践深度学习中的图像识别技术。
摘要由CSDN通过智能技术生成

深度学习是机器学习的一个分支,被视为研究人员近几十年来采取的重要步骤。深度学习实现的示例包括图像识别和语音识别等应用。

两种重要类型的深度神经网络如下所示 -

卷积神经网络
循环神经网络
在本章中,我们将重点关注第一种类型,即卷积神经网络(CNN)。

卷积神经网络
卷积神经网络旨在通过多层数组处理数据。这种类型的神经网络用于图像识别或人脸识别等应用。

CNN与任何其他普通神经网络的主要区别在于,CNN将输入作为二维数组,并直接在图像上操作,而不是关注其他神经网络关注的特征提取。

CNN的主要方法包括解决识别问题。像谷歌和Facebook这样的顶级公司已经投资于识别项目的研究和开发,以更快地完成任务。

每个卷积神经网络包括三个基本概念 -

1. 局部响应字段
2. 卷积
3. 池化
让我们详细了解这些术语。

局部响应字段
CNN利用输入数据中存在的空间相关性。神经网络的并行层中的每个连接都由某些输入神经元组成。这个特定区域被称为局部响应字段。它只关注隐藏神经元。隐藏神经元将处理特定字段内的输入数据,而不会意识到特定边界之外的变化。

生成局部响应字段的示意图如下所示 -

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值