一、RSA简介
1. 实现
RSA是基于陷门单向函数实现
2. 安全基础
依赖于大整数的分解问题的难解性
二、算法过程
为了加深对RSA算法的了解,接下来通过简单的一个例子来分析一下:
根据已知参数: p = 3 , q = 11 , M = 2 p = 3, q = 11, M = 2 p=3,q=11,M=2,手工计算公私钥,并对明文进行加密,然后对密文进行解密。
(1)首先计算
n
=
p
×
q
=
3
×
11
=
33
n = p × q = 3 × 11 =33
n=p×q=3×11=33
(2)
Φ
(
n
)
=
(
p
−
1
)
(
q
−
1
)
=
2
×
10
=
20
Φ(n) = (p - 1)(q - 1) = 2 × 10 = 20
Φ(n)=(p−1)(q−1)=2×10=20
(3)选取加密密钥
e
=
3
e = 3
e=3, 因为有
1
<
e
<
Φ
(
n
)
1< e < Φ(n)
1<e<Φ(n)且
g
c
d
(
3
,
20
)
=
1
gcd(3,20) = 1
gcd(3,20)=1,
e
e
e作为公开加密密钥
(4)计算
d
d
d, 使
d
e
≡
1
(
m
o
d
Φ
(
n
)
)
de ≡ 1(\mod Φ(n))
de≡1(modΦ(n)),容易求解
d
=
7
d = 7
d=7,
d
d
d是私钥
(5)加密过程:对于明文
M
=
2
,
c
=
M
e
m
o
d
n
=
23
m
o
d
33
=
8
M=2, c = M^e\mod n = 23 \mod 33 = 8
M=2,c=Memodn=23mod33=8
(6)解密过程
M
=
c
d
m
o
d
n
=
87
m
o
d
33
=
2097152
m
o
d
33
=
2
M = c^d \mod n = 87 \mod 33 = 2097152 \mod 33 = 2
M=cdmodn=87mod33=2097152mod33=2
不难理解,当 p , q p,q p,q非常大时,攻击者想要通过 n n n值分解为 p × q p \times q p×q将是极其困难的,因此我们要尽可能找到大的素整数。
三、Java大整数运算
程序示例: 随机选择3个较大的素数 x 、 e 、 n x、e、 n x、e、n ,计算 x e % n x^e \% n xe%n
//生成指定比特长度的大素数
public static BigInteger genBigPrimer(int length){
Random random = new Random(new Date().getTime());
return BigInteger.probablePrime(length, random);
}
//大素数运算
public static void bigPrimerCalc(int len_X,int len_E, int len_N){
//Get x,e,n
BigInteger big_X = genBigPrimer(len_X);
BigInteger big_E = genBigPrimer(len_E);
BigInteger big_N = genBigPrimer(len_N);
//Calculate x^e%n
BigInteger BigResult = big_X.modPow(big_E, big_N);
System.out.println( big_X+"^" );
System.out.println( big_E+ " mod " );
System.out.println( big_N+ " is " );
System.out.println( BigResult);
}