传统神经网络

这篇博客详细介绍了传统神经网络,从线性回归的梯度下降法开始,探讨了非线性激励的重要性,包括sigmoid、tanh、ReLU和Leaky ReLU函数。接着,讲解了神经网络中的损失函数、学习速率和动量等关键概念,以及防止过拟合的策略,如正则化和dropout。最后,提到了在Mnist数据集上实现神经网络模型进行手写数字识别的例子。

传统神经网络

1. 线性回归

梯度下降法

  • 总结:
    随机初始化参数;
    开启循环:t = 0, 1, 2 …
    带入数据求出结果: y^t
    与真值作比较得到: loss=yy^t
    对各个变量求导得到 Δm
    Δm=[x1,t,x2,t,x3,t,1]
    更新变量 m : m:=mηΔm
    如果 loss t$循环结束,则停止

2. 线性到非线性

非线性函数

评价非线性激励的两个标准

  • 正向对输入的调整
  • 反向梯度损失

常用的非线性激励函数

  • sigmoid函数

    y(x)=sigmoid(x)=11+exy(x)=y(x)(1y(x))

    这里写图片描述

    由图可以知道,当导数最大时, x=0 ,此时 y(x)=0.5 , y(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值