题目一:滑动窗口的最大值
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。
例子:
例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。
链接:
剑指Offer(第2版):P288
思路标签:
- 数据结构:双向开口队列
解答:
- 滑动窗口可以看作是一个队列;
- 如果每次都遍历队列去观测最大值,那么和枚举遍历的复杂度无异。所以在队列中我们保证队列的头部是窗口中的最大值,使用队列保存数组的下标;
- 使用窗口最大值数组保存结果;
- 除了前三次入队的操作外,入队操作前都要先保存当前窗口最大值,也就是队列的第一个值;
- 注意:如果后入队的index数字小于队列中的index数字,则后入队的依然有成为后面窗口的最大值的可能;
- 但是如果后入队的index数字大于队列中的index数字,则一定是后入队的数字是窗口的最大值,所以要将前面的数字移除队列;
- 注意最后一个窗口的最大值。
class Solution {
public:
vector<int> maxInWindows(const vector<int>& num, unsigned int size)
{
vector<int> maxInWindows;
if(num.size() >= size && size >= 1){
deque<int> index;
for(int i=0; i<size; ++i){
while(!index.empty() && num[i] >= num[index.back()])
index.pop_back();
index.push_back(i);
}
for(int i=size; i<num.size(); ++i){
maxInWindows.push_back(num[index.front()]);
while(!index.empty() && num[i] >= num[index.back()])
index.pop_back();
if(!index.empty() && index.front() <= (int)(i-size))
index.pop_front();
index.push_back(i);
}
maxInWindows.push_back(num[index.front()]);
}
return maxInWindows;
}
};
题目二:队列的最大值
请定义一个队列并实现函数max得到队列里的最大值,要求函数max、push_back和pop_front的时间复杂度都是O(1)。
链接:
剑指Offer(第2版):P292
思路标签:
- 算法:双开口队列
解答:
- 同上一题相同,我们要寻找队列的最大值,相当与将滑动窗口设置为整个队列。
- 这里需要使用两个队列,一个队列用来保存入队的数据,一个队列用来保存队列的当前最大值。
- 同时需要注意出队操作,数据队列出队的同时需要判断其索引是否和当前最大值队列首部索引相同,如果相同则同时也将最大值队列头部出队。
template<typename T> class QueueWithMax {
public:
QueueWithMax() :currentIndex(0) {}
void push_back(T number) {
while (!maximums.empty() && number >= maximums.back().number)
maximums.pop_back();
InternaData internaData = {number, currentIndex};
data.push_back(internaData);
maximums.push_back(internaData);
++currentIndex;
}
void pop_front() {
if (maximums.empty())
throw new exception("queue is empty.");
if (maximums.front().index == data.front().index)
maximums.pop_front();
data.pop_front();
}
T max() const {
if (maximums.empty())
throw new exception("queue is empty.");
return maximums.front().number;
}
private:
struct InternaData {
T number;
int index;
};
deque<InternaData> data;
deque<InternaData> maximums;
int currentIndex;
};