单调递增的数字
题目:
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
示例 1:
输入: N = 10
输出: 9
示例 2:
输入: N = 1234
输出: 1234
示例 3:
输入: N = 332
输出: 299
解题思路:先找到从第一位开始最长的单调递增子数组,然后依次从最后一位满足要求的数字开始递减,直到满足递增要求后,将后面的数字全置为9就是最大小于N的单调递增的数字
class Solution {
public int monotoneIncreasingDigits(int N) {
if(N == 10) {
return 9;
}
if(N < 10) {
return N;
}
char ch[] = ("" + N).toCharArray();
int len = ch.length;
// 找到第一个非递增的数字
int i = 1;
while(i < len && ch[i - 1] <= ch[i]) {
i++;
}
// 判断数字每一位是否都满足单调递增
if(i < len) {
// 当前数字不满足单调递增,那么就让其减一
// 因为 0 -> i - 1 是单调递增的 那么只要保证 ch[i - 1] <= ch[i] 即可
// 不断循环 直到ch[i - 1] <= ch[i] 之后将ch[i] -> ch[len - 1] 置为9后
// 就是小于N的最大整数
while(i > 0 && ch[i - 1] > ch[i]) {
// 因为 要求的是小于N的最大整数 所以要让ch[i - 1]-- 来保证数字小于N
ch[i - 1]--;
i--;
}
for(i = i + 1; i < len; i++) {
ch[i] = '9';
}
}
return Integer.parseInt(new String(ch));
}
}